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a b s t r a c t

Residual distributions (RD) schemes are a class of high-resolution finite volume methods
for unstructured grids. A key feature of these schemes is that they make use of genuinely
multidimensional (approximate) Riemann solvers as opposed to the piecemeal 1D Rie-
mann solvers usually employed by finite volume methods. In 1D, LeVeque and Pelanti
[R.J. LeVeque, M. Pelanti, A class of approximate Riemann solvers and their relation to
relaxation schemes, J. Comput. Phys. 172 (2001) 572] showed that many of the standard
approximate Riemann solver methods (e.g., the Roe solver, HLL, Lax-Friedrichs) can be
obtained from applying an exact Riemann solver to relaxation systems of the type intro-
duced by Jin and Xin [S. Jin, Z.P. Xin, Relaxation schemes for systems of conservation-laws
in arbitrary space dimensions, Commun. Pure Appl. Math. 48 (1995) 235]. In this work we
extend LeVeque and Pelanti’s results and obtain a multidimensional relaxation system
from which multidimensional approximate Riemann solvers can be obtained. In particular,
we show that with one choice of parameters the relaxation system yields the standard
N-scheme. With another choice, the relaxation system yields a new Riemann solver, which
can be viewed as a genuinely multidimensional extension of the local Lax-Friedrichs
scheme. This new Riemann solver does not require the use Roe–Struijs–Deconinck aver-
ages, nor does it require the inversion of an m �m matrix in each computational grid cell,
where m is the number of conserved variables. Once this new scheme is established, we
apply it on a few standard cases for the 2D compressible Euler equations of gas dynamics.
We show that through the use of linear-preserving limiters, the new approach produces
numerical solutions that are comparable in accuracy to the N-scheme, despite being com-
putationally less expensive.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In the last few decades intense research into shock-capturing schemes has resulted in several numerical methods for solv-
ing partial differential equations (PDEs) that admit discontinuous weak solutions in the form of shock-waves. Examples of
such schemes include WENO (weighted essentially non-oscillatory) [16], central [18], MUSCL (monotone upstream-centered
schemes for conservation laws) [27], and wave propagation schemes [19]. One difficulty with these methods is that in gen-
eral they do not trivially extend to problems in complex geometries. In order to handle application problems where complex
geometry is of great importance, three broad classes of strategies have been considered: (1) Cartesian cut-cell methods [15],
. All rights reserved.
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(2) overlapping meshes [9], and (3) unstructured grid methods. We will focus in this work on the last approach, thus elim-
inating the problem of cut-cells (1st approach) and interpolation between different grid patches (2nd approach), but requir-
ing some efficient grid generation tool.

On unstructured grids, the two main classes of methods that have been developed are discontinuous Galerkin (DG)
[10,22] and residual distribution (RD) [1,13] schemes. The discontinuous Galerkin approach is based on defining a piecewise
polynomial approximation that is continuous inside element interiors, but discontinuous across element boundaries. Local
1D Riemann problems are solved across element boundaries to construct the necessary numerical fluxes. Residual distribu-
tion schemes can be viewed as a finite volume method where the finite volumes are defined by a grid that is dual to the
original triangulation.

Although DG schemes have their own particular advantages, the focus of this work will be on RD schemes and, in partic-
ular, the aspect of RD schemes that separates them from all other methods: RD schemes are based on solving genuinely mul-
ti-dimensional Riemann problems. This aspect allows one to obtain methods that are positivity preserving for scalar
conservation laws and essentially non-oscillatory for systems. This same feature, however, presents a challenge: how can
these multi-dimensional Riemann problems be solved efficiently? The standard answer to this question is the so-called sys-
tems N-scheme [26] (see also [1,3]), which is a generalization of Roe’s approximate Riemann solver for 1D systems [23]. One
goal of this work is to develop an alternative to this approach.

LeVeque and Pelanti [21] showed how several of the standard approximate Riemann solvers can be interpreted as exact
Riemann solvers for a perturbed system of hyperbolic equations known as relaxation systems. Their work was motivated by
Jin and Xin’s earlier paper [17] on a class of numerical methods known as relaxation schemes. What LeVeque and Pelanti
essentially showed is that Jin and Xin’s ‘‘new” class of methods could actually be thought of as a reinterpretation of various
pre-existing approximate Riemann solvers; these results are reviewed in Section 2. After reviewing RD schemes in Section 3,
we focus in this work on the continuation of LeVeque and Pelanti’s reasoning and show how the N-scheme can be also be
derived from a relaxation system. Furthermore, using this interpretation we derive a novel genuinely multi-dimensional Rie-
mann solver that can be viewed as a multidimensional extension of the 1D local Lax-Friedrichs scheme [24]. Both of these
results are presented in Section 4. Finally, we compare the numerical accuracy of the N-scheme and the newly derived
scheme on several examples in Section 5. What we find is that when the appropriate limiters are applied, the novel scheme
has comparable accuracy to the N-scheme, although it tends to be slightly more diffusive – this result is of course consistent
with well-known 1D results comparing local Lax-Friedrichs versus Roe-type approximate Riemann solvers. On the other
hand, this loss of accuracy is compensated by the fact that the new scheme is less computational expensive. This gain in com-
putational efficiency will become significant for problems involving complicated equations such as the relativistic Euler or
MHD equations.

2. Review of 1D relaxation systems

We briefly review in this section the results of LeVeque and Pelanti [21] for the case of 1D conservation laws. For simplic-
ity we consider for the moment a scalar conservation laws of the form
q;t þ f ðqÞ;x ¼ 0; ð1Þ
where x 2 R is the spatial coordinate, t 2 Rþ is the time coordinate, q 2 R is the conserved variable, and f ðqÞ : R! R is the
flux function. We assume that this conservation law is hyperbolic, meaning that f 0ðqÞ 2 R for all q in the solution domain.

2.1. Finite volume methods in 1D

Using the idea of relaxation, we will construct in this section numerical methods for approximating (1). All of these meth-
ods are in the general class of finite volume methods [20], which we briefly recall in this subsection.

Let T Dx be the numerical grid with grid cells centered at x = xi and spanning the interval [xi � Dx/2, xi + Dx/2], where
xi ¼ aþ ði� 1=2ÞDx: ð2Þ
Here i is an integer ranging from 1 to N, a and b are the left and right end points of the domain, respectively, and Dx = (b � a)/
N is the grid spacing. In each grid cell xi and at each time level t = tn we seek an approximation to the cell average of the exact
solution q(x,t):
Qn
i �

1
Dx

Z xiþDx=2

xi�Dx=2
qðn; tnÞdn: ð3Þ
Integrating (1) over the grid cell centered at xi and from t = tn to t = tn+1 results in a numerical update formula for Q n
i that can

be written in the following fluctuation splitting form:
Qnþ1
i ¼ Q n

i �
Dt
Dx
½A�DQ n

iþ1=2 þA
þDQ n

i�1=2�; ð4Þ
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where A�DQ n
iþ1=2 and AþDQ n

i�1=2 are left- and right-going fluctuations, which measure the amount of flux that enters into grid
cell xi through the grid interfaces at x = xi + Dx/2 and x = xi � Dx/2, respectively. In order for this update to be numerically
conservative these fluctuations must satisfy
A�DQ n
iþ1=2 þA

þDQ n
iþ1=2 ¼ f ðQ n

iþ1Þ � f ðQ n
i Þ: ð5Þ
Note that in update (4) we collect the left-going fluctuation from the grid interface at xi + Dx/2 and the right-going fluctu-
ation from the grid interface at xi � Dx/2, while in expression (5) we are adding the left- and right-going fluctuations at the
same grid interface.

For first-order accurate methods, the fluctuations in update (4) are obtained by first assuming that the approximate solu-
tion has a constant value, Q n

i , in each grid cell, and then solving at each grid interface, xi�1/2 � xi � Dx/2, the initial value
problem for (1) with the piecewise constant initial data:
qðx;0Þ ¼
Q n

i�1 if x < xi�1=2;

Q n
i if x < xi�1=2:

(
ð6Þ
This initial value problem is referred to as the Riemann problem. One of the pieces of information that can be obtained from
solving the Riemann problem is how much of the initial flux difference, f ðQ n

i Þ � f ðQ n
i�1Þ, is carried to the left and how much to

the right. It is precisely this information that is stored in the fluctuations, A�DQ and AþDQ .

2.2. Relaxation method framework in 1D

The relaxation schemes introduced by Jin and Xin [17] are based on the idea of approximating the quasilinear equation (1)
by a linear system with a cleverly chosen source term. The role of this source term is to force the linear system to relax in the
limit as t ?1 towards the original equation. By ‘‘hiding” the nonlinearity in the source term, relatively complicated quasi-
linear Riemann problems can be replaced by simpler linear Riemann problems.

There are many kinds of relaxation systems that one could develop in order to create an approximate solution to (1) (see
pp. 26–48 of Bouchut [7] for a discussion of several different approaches). In this work we follow the approach of [21] and
consider the following relaxation system:
q

l

� �
;t

þ
0 1
�cd c þ d

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

coefficient matrix

q

l

� �
;x

¼ 1
e

0
f ðqÞ � l

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

source term

;
ð7Þ
where c; d 2 R are parameters that will be adjusted in the next few subsections in order to arrive at various approximate
Riemann solvers. Without loss of generality we will assume that c 6 d. The key observation is that by taking e ? 0, the
right-hand side forces l ? f(q). Since the first equation in the above system is q,t + l,x = 0, l ? f(q) will cause the relaxed sys-
tem solution to approach the original conservation law solution.

In order to make this statement more precise, we will carry out a so-called Chapman-Enskog expansion, which in this case
is simply a Taylor series expansion in e applied to system (7). Omitting the algebra, this expansion to Oðe2Þ yields the follow-
ing equation for q(x, t):
q;t þ f ðqÞ;x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
original cons: law

¼ e
of
oq
� c

� �
d� of

oq

� �
q;x

� �
;x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusive correction

þOðe2Þ: ð8Þ
This approximation is stable for e > 0 if the values c and d are chosen to produce positive (or at least non-negative) diffusion;
this occurs if
c 6
of
oq
6 d: ð9Þ
The above statement is often referred as the sub-characteristic condition (see for example [8,17,21]), since it requires that the
eigenvalues of the coefficient matrix, which are just c and d, enclose the characteristic speed of the original conservation law,
of/oq.

From relaxation system (7), LeVeque and Pelanti [21] showed that various classical approximate Riemann solvers could
be derived. Following the philosophy of operator splitting (see pp. 380–390 of LeVeque [20] for a review), system (7) is first
rewritten as two sub-problems:
q

l

� �
;t

þ
0 1
�cd c þ d

� �
q

l

� �
;x

¼ 0; ð10Þ

l;t ¼
1
e
ðf ðqÞ � lÞ: ð11Þ
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Using this interpretation, LeVeque and Pelanti’s [21] procedure for obtaining different approximate Riemann solvers can be
summarized as follows:

(1) Choose values for the parameters c and d.
(2) Exactly solve the Riemann problem for the homogeneous linear system (10).
(3) Approximate the effect of equation (11) on the solution calculated in Step (2) by directly setting l = f(q). In other

words, instantaneously relax the solution from Step (2) to the e ? 0 limit.

We will simply refer to this as the relaxation procedure. In the next four subsections, we will apply this strategy for various
values of c and d. Each time we carry out step (2) of the above procedure we will exactly solve the initial value problem (i.e.,
�1 < x <1) for system (10) using the generic Riemann data:
qðx;0Þ ¼
Q ‘ if x < 0;
Q r if x > 0;

�
and lðx;0Þ ¼

f ðQ ‘Þ if x < 0;
f ðQ rÞ if x > 0;

�
ð12Þ
where Q‘ and Qr are constants. Note that we are allowed to take l = f(q) in the initial conditions at any arbitrary time step,
since in the previous time-step we set l = f(q) in Step (3) of the relaxation procedure.

2.3. Local Lax-Friedrichs (LLF) for scalar equations

The local Lax-Friedrichs or Rusanov method [24] is obtained by applying the relaxation procedure with the choice
c ¼ �s and d ¼ s; ð13Þ
where s P jf0(q)j in order to satisfy the sub-characteristic condition. With this choice the Riemann solution is obtained by
splitting the jump between the left and right states, (Q‘, f(Q‘)) and (Qr, f(Qr)), along the eigenvectors of the coefficient matrix:
Q r � Q ‘

f ðQrÞ � f ðQ ‘Þ

� �
¼ a1 1

�s

� �
þ a2 1

s

� �
; ð14Þ
where the corresponding eigenvalues are k1 = �s and k2 = s. From this expression we obtain the following fluctuations:
A�DQ ¼ k1a1 ¼ 1
2
ðf ðQ rÞ � f ðQ ‘ÞÞ �

s
2
ðQr � Q ‘Þ; ð15Þ

AþDQ ¼ k2a2 ¼ 1
2
ðf ðQ rÞ � f ðQ ‘ÞÞ þ

s
2
ðQr � Q ‘Þ: ð16Þ
2.4. Harten, Lax, and van Leer (HLL) for scalar equations

The HLL method of [14] is obtained by applying the above procedure with the choice
c ¼ s‘ and d ¼ sr; ð17Þ
where s‘ 6 f0(q) 6 sr in order to satisfy the sub-characteristic condition. With this choice the Riemann solution is obtained by
splitting the jump between the left and right states, (Q‘, f(Q‘)) and (Qr, f(Qr)), along the eigenvectors of the coefficient matrix:
Q r � Q ‘

f ðQrÞ � f ðQ ‘Þ

� �
¼ a1 1

s‘

� �
þ a2 1

sr

� �
; ð18Þ
where the corresponding eigenvalues are k1 = s‘ and k2 = sr. From this expression we obtain the following fluctuations:
A�DQ ¼ s�‘ a
1 þ s�r a2 ¼ s�r � s�‘

sr � s‘

� �
ðf ðQ rÞ � f ðQ ‘ÞÞ �

s�r s‘ � s�‘ sr

sr � s‘

� �
ðQr � Q ‘Þ: ð19Þ
In the above expressions we have made use of the following notation:
sþ ¼maxð0; sÞ and s� ¼minð0; sÞ: ð20Þ
We will make use of this notation throughout the remainder of this paper.

2.5. Roe’s approximate Riemann solver for scalar equations

Roe’s approximate Riemann solver [23] is obtained by applying the above procedure with the choice
c ¼ d ¼ s � f ðQ rÞ � f ðQ ‘Þ
Qr � Q ‘

: ð21Þ
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With this choice the coefficient matrix becomes deficient, since only one linearly independent eigenvector exists. Therefore,
the jump between the left and right states, (Q‘, f(Q‘)) and (Qr, f(Qr)), can be written as
Q r � Q ‘

f ðQ rÞ � f ðQ ‘Þ

� �
¼ a

1
s

� �
; ð22Þ
where the corresponding eigenvalue is k = s (algebraic multiplicity 2, geometric multiplicity 1). Although this seems like an
over-determined system for a, there exists a unique solution: a = Qr � Q‘. This results in the following fluctuations:
A�DQ ¼ s�ðQ r � Q ‘Þ: ð23Þ
2.6. LLF and HLL for systems

Finally, we briefly explain how these three interpretations can be applied to a system of conservation laws of the form (1),
now with q 2 Rm and f ðqÞ : Rm ! Rm. We again assume hyperbolicity, which implies that the m �m matrix, of/oq, has m real
eigenvalues and m linearly independent eigenvectors for all q in the solution domain.

The systems LLF and HLL methods are obtained by considering the following relaxation system:
q
l

� �
;t

þ
0I I

�cdI ðc þ dÞI

� �
q
l

� �
;x

¼ 1
e

0
f ðqÞ � l

� �
; ð24Þ
where I is the m �m identity matrix, 0I is the m �m matrix with zeros in every entry, l 2 Rm, and c; d 2 R.
The systems LLF method is obtained by taking
s ¼ d ¼ �c; where s P max
p¼1;...;m

jkpj; ð25Þ
and kp is the pth eigenvalue of o f/oq. With this choice we again arrive at formula (15), which is now applied to each com-
ponent of the solution vector.

Similarly, the systems HLL method is obtained by taking
s‘ ¼ c; sr ¼ d; where s‘ 6 min
p¼1;...;m

kpð Þ and sr P max
p¼1;...;m

kpð Þ: ð26Þ
With this choice we again arrive at formula (19), which is now applied to each component of the solution vector.

2.7. Roe’s approximate Riemann solver for systems

Roe’s approximate Riemann solver does not follow from working with relaxation system (24), but instead from
q

l

� �
;t

þ
0I I

�ð̂JÞ2 2bJ
� �

q

l

� �
;x

¼ 1
e

0
f ðqÞ � l

� �
: ð27Þ
In the above expression,
bJ ¼ of
oq
ðbQ Þ; ð28Þ
where bQ is the Roe average [23] and satisfies
of
oq
ðbQ ÞðQ r � Q ‘Þ ¼ f ðQ rÞ � f ðQ ‘Þ: ð29Þ
With this choice the Riemann solution is obtained by splitting the jump between the left and right states, (Q‘, f(Q‘)) and
(Qr, f(Qr)), along the m distinct eigenvectors of Ĵ in the following manner:
Q r � Q ‘

f ðQ rÞ � f ðQ ‘Þ

� �
¼ a1 r1

s1r1

" #
þ � � � þ am rm

smrm

� �
; ð30Þ
where sp and rp are the pth eigenvalue and right eigenvector of the Roe matrix Ĵ, respectively. Just as in the scalar case, it
seems as though the parameters a are overdetermined. However, since Ĵ satisfies the constraint (29), it can easily be shown
that the first set of m equations involving Qr � Q‘ are identical to the second set of m equations involving f(Qr) � f(Q‘). In other
words, there are only m distinct equations for m values of a; and therefore, a unique solution exists:
ap ¼ ‘p � ðQr � Q ‘Þ; for p ¼ 1; . . . ;m; ð31Þ
where ‘p is the pth left eigenvector of bJ . This results in the following fluctuations:
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A�DQ ¼
Xm

p¼1

½sp��f‘p � ðQ r � Q ‘Þgrp: ð32Þ
Note that conservation follows from (29).

3. Residual distribution schemes

We will describe in this section the basic residual distribution method for solving hyperbolic conservation laws in mul-
tidimensions. For further details we refer the reader to articles by Abgrall [1,2] and Abgrall and Mezine [4,5]. We consider a
conservation law of the form
q;t þr �~f ðqÞ ¼ q;t þ f ðqÞ;x þ gðqÞ;y ¼ 0; ð33Þ
where ðx; yÞ 2 R2 are the spatial coordinates, t 2 R is the time coordinate, q 2 Rm is the vector of conserved variable, and
~f ðqÞ : Rm ! Rm�2 is the flux function. We will assume that this equation is hyperbolic, meaning that the m �m flux Jacobian
matrix,
Jð~nÞ �~n � o
~f ðqÞ
oq

; ð34Þ
is diagonalizable with real eigenvalues for all ~n 2 R2 such that k~nk ¼ 1 and for all q in the solution domain.
The first step in approximately solving (33) in some domain X 	 R2 is to mesh the domain with a finite number of tri-

angles. We will refer to this triangulation as T h, where h refers to a representative triangle radius, which in this work we
just take to be the square root of the triangle area: h �

ffiffiffiffiffiffiffi
jT j

p
. Associated with this triangulation is a dual grid, which is con-

structed by connecting triangle centers to edge centers. A an example triangulation along with its dual grid is shown in Fig. 1.
Unlike the discontinuous Galerkin approach [10,22], approximate solutions are centered on triangle nodes (i.e., centers of

the dual grid) rather than triangle centers. In order to obtain an update for these node centered values, we integrate (33) over
the median dual cell Ci and from t = tn to t = tn+1:
ZZ

Ci

qð~x; tnþ1Þd~x ¼
ZZ

Ci

qð~x; tnÞd~x�
Z tnþ1

tn

ZZ
Ci

r �~f ðqÞd~xdt ¼
ZZ

Ci

qð~x; tnÞd~x�
X
T :i2T

Z tnþ1

tn

I
oðCi\T Þ

~f ðqÞ � d~sdt:
Next we define the median dual cell average and the time-averaged fluctuations through oðCi \ T Þ:
Qn
i �

1
jCij

ZZ
Ci

qð~x; tnÞd~x; ð35Þ

UTi �
1
Dt

Z tnþ1

tn

I
oðCi\T Þ

~f ðqÞ � d~sdt: ð36Þ
Using these definitions, the update formula for a generic residual distribution scheme can be written as follows:
Qnþ1
i ¼ Q n

i �
Dt
jCij

X
T :i2T

UTi : ð37Þ
Fig. 1. Sample triangulation and dual grid.



Fig. 2. A depiction of the multidimensional Riemann problem that must be solved in each triangle. The numerical solution is piecewise constant on each
median dual cell. For example, the approximate solution on the three dual cells that overlap the triangle shown in this figure are Q1, Q2, and Q3. Note that the
area of each of the three sections is the same, the midpoint where the dashed lines meet is ð~x1 þ~x2 þ~x3Þ=3, ~nk are the inward-pointing normal vectors to
each edge, and the magnitude of ~nk is equal to the length of the edge to which it is orthogonal.
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In the remainder of this work, we will approximate the exact solution, qð~x; tÞ, with a piecewise constant representation, Q n
i ,

that is constant on each median dual cell. We note that this view of RD schemes is slightly different than the standard view
(e.g. [1]), where the approximate solution is usually viewed to be piecewise linear on each triangle T . Although these
descriptions seem contradictory, in the case for first-order accuracy in time, both interpretations yield the same numerical
schemes. The advantage of viewing the solution as being piecewise constant on each medial dual cell is that this naturally
sets up a series of multidimensional Riemann problems in each triangle (see Fig. 2), which can be solved to construct the
fluctuations1UTi . In this way, we can then view approximate constructions of UTi as approximate Riemann solvers.

Computing the fluctuations UTi is generally done using the following framework (again, the two interpretations, piece-
wise constant on each dual cell vs. piecewise linear on each primal cell, make use of the exactly the same framework):

(1) On each triangle T construct a total residual:
1 In t
2 For
UT ¼
ZZ

T
r �~f hd~x ¼

I
oT

~f h � d~s; ð38Þ
where~f h denotes an interpolant that passes through the three nodal values
ð~xi;
~f ðQ iÞÞ for i ¼ 1;2;3:
For example if we simply use linear interpolation, the total residual can be written as2
UT ¼ 1
2

X3

i¼1

~f ðQ iÞ �~ni: ð39Þ
Here~ni represents the inward pointing normal vectors to the three edges of the triangle T . The length of~ni is equal to
the length of the edge to which it is perpendicular. If the three nodes of triangle T are given by (xi,yi) for i = 1,2,3, then
the three scaled normals can be written as
~n1 ¼ ðy2 � y3; x3 � x2Þt ;
~n2 ¼ ðy3 � y1; x1 � x3Þt ;
~n3 ¼ ðy1 � y2; x2 � x1Þt :
(2) Once this total residual has been calculated, it is then distributed to each of the nodes of the triangle:
UT ! UT1 ;U
T
2 ;U

T
3 :
The detailed strategy for how this distribution is accomplished yields a specific numerical method.

3.1. Design principles for scalar conservation laws

We first focus on design principles for scalar equations; in a subsequent subsection we explain how to extend this to the
systems case. In order to obtain a numerical update that produces a stable and accurate approximation to (33), we will need
the distribution strategy to satisfy certain properties:
his work, the terms distributed residual and fluctuation mean the same thing and are used interchangeably.
the standard N-scheme, which we will describe shortly, this is not the definition of the total residual that is used.
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(1) Numerical conservation: Since the interpolation of the numerical solution is continuous across triangle edges, conser-
vation simply reduces to the following constraint:
X3

i¼1

UTi ¼ UT : ð40Þ
In other words, in a given triangle, the sum of the distributed residuals must equal the total residual.
(2) Monotonicity preserving: This condition makes sure that the numerical update satisfies a local maximum principle,

which is needed to guarantee that the update does not generate any new spurious maxima or minima. If we write
UTi ¼
X3

j¼1

cTij ðQ
n
i � Qn

j Þ; ð41Þ
then the monotonicity requirement can be written as (see [13]):
cTij P 0 8i; j 2 ð1;2;3Þ: ð42Þ
(3) Linear preserving: The order of accuracy of update (37) in the steady-state depends, among other things, on how accu-
rately the total residual (38) is calculated on each triangle [6]. If we use formula (39), then UT ¼ Oðh3Þ in the steady-
state, which is the correct order of accuracy if want an approximate solution, Qi, that is Oðh2Þ accurate in the steady-
state. What we actually need in order to get an Oðh2Þ accurate steady-state solution is that not only that UT ¼ Oðh3Þ,
but that each distributed residual also satisfies UTi ¼ Oðh

3Þ. The distributed residuals can be written as
UT1 ¼ b1U
T ; UT2 ¼ b2U

T ; UT3 ¼ b3U
T ; ð43Þ
wherebi measures the fraction of the total residual that is distributed to node i. To ensure that the distributed residuals are
of the same order as the total residual, we need to make sure that the bi’s remain bounded as h ? 0. Therefore, theOðh2Þ
accuracy condition, or more commonly referred to as the linear preserving condition, can be writtten as follows (see [13]):
bi for i ¼ 1;2;3; is uniformly bounded independent of the mesh: ð44Þ
3.2. Scalar N-scheme

Modern finite volume methods for hyperbolic PDEs are typically based on solving, either exactly or approximately, a Rie-
mann problem between neighboring states. For multidimensional problems, a standard approach is to solve local 1D Rie-
mann problems and then use the information from the Riemann solutions to construct numerical fluxes or fluctuations
(see Chapters 19–21 of LeVeque [20]).

In the RD framework, however, a multidimensional Riemann problem is solved. In an arbitrary triangle T , we consider the
Riemann problem between three constant states: Q1, Q2, and Q3 (see Fig. 2 for a depiction). Exact solutions to multidimen-
sional Riemann problems are at best expensive to evaluate, and in general not well-understood for many hyperbolic systems
such as the Euler equations from gas dynamics [25]. Therefore, in practice an approximate method such as the N-scheme
(the ‘‘N” stands for Narrow) [12,13] is utilized; this approach can be viewed as a multidimensional generalization of Roe’s
approximate Riemann solver [23].

Just as in the 1D case, we define a Roe-average (henceforth called the Roe–Struijs–Deconinck average [12]):
~uT � o~f
oq
ðbQ Þ; ð45Þ
where bQ is an average of the three nodal values Qi for i = 1,2,3 on the current triangle T . The Roe–Struijs–Deconinck average
satisfies the following constraint, which generalizes the 1D constraint given by (29):
UT � 1
2

X3

i¼1

~uT �~ni
	 


Q i ¼
I

oT

~f ðqhÞ � d~s; ð46Þ
where qh is the linear interpolant passing through ð~xi;Q iÞ for i = 1,2,3. If the flux, f(q), is at most a quadratic function of q, then
~uT ¼ 1
3
ð~f 0ðQ 1Þ þ~f 0ðQ 2Þ þ~f 0ðQ3ÞÞ: ð47Þ
The approximate Riemann solution gives rise to the following set of fluctuations:
N-scheme : UTi ¼
1
2
½~uT �~ni�þðQ i � QHÞ; ð48Þ
where Qw is the so-called upwind parameter. In 1D the the upwind parameter relative to state Qi is always either Qi�1 if u > 0
or Qi+1 if u < 0. In multidimensions, Qw is obtained by enforcing the conservation constraint (40):
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QH ¼
X3

i¼1

½~uT �~ni��Qi

 ! X3

j¼1

½~uT �~nj��
 !,

; ð49Þ
where we have made use of the following two identities:
X3

i¼1

ð~uT �~niÞQ i ¼
X3

i¼1

½~uT �~ni�þQ i þ
X3

i¼1

½~uT �~ni��Q i;

X3

i¼1

ð~uT �~niÞ ¼
X3

i¼1

½~uT �~ni�þ þ
X3

i¼1

½~uT �~ni�� ¼ 0:
In order to demonstrate that the N-scheme is monotonicity preserving, we rewrite (48) in the form (41) with
cTij ¼
½~uT �~ni�þ½~uT �~nj��P

k
½~uT �~nk��

P 0: ð50Þ
From this it can be shown that update (37) is monotone under the following CFL condition:
Dt 6 min
i

2jCijP
T :i2T
½~uT �~ni�þ

8><>:
9>=>;: ð51Þ
3.3. Linear preserving limiters

The N-scheme described so far is both conservative and monotonicity preserving; however, it is not yet linear preserving.
The problem with the previously described N-scheme is that the weights (43) are not uniformly bounded independent of the
mesh. In order to modify the N-scheme to achieve uniformly bounded bi’s, Abgrall and Mezine [5] introduced a nonlinear
limiting procedure. The limiting process takes the original bi and replaces them with limited versions, denoted ~bi. The sim-
pler of the two approaches discussed in [5] yields the following formulas:
bi ¼
UTi
UT

! ~bi ¼
½bi�

þP
j
½bj�

þ ; ð52Þ
which guarantees that 0 6 ~bi 6 1. The limited residuals are then given by
Limited N-scheme : UTi ¼ ~biU
T : ð53Þ
It is clear that this scheme is both linear preserving and conservative. Furthermore, Abgrall and Mezine [5] proved that the
limited N-scheme retains the monotonicity properties of the original N-scheme with the same CFL condition (51).

3.4. Extension to systems

Following [12], the N-scheme is extended to systems of conservation laws by first defining the following averaged flux
Jacobians:
bJ1 � of
oq
ðbZÞ; bJ2 � og

oq
ðbZÞ; and ~J � ðbJ1;bJ2Þ; ð54Þ
where Z is a parameterization of Q and
bZ ¼ 1
3
ðZ1 þ Z2 þ Z3Þ: ð55Þ
In order to achieve a conservative linearization we must find a parameter vector, Z, such that the following constraint is
satisfied:
X3

i¼1

ð~ni �~JÞbQ i ¼
I

oT

~f ðzhÞ � d~s; ð56Þ
where zh is the linear interpolant that passes through the points ð~xi; ZiÞ for i = 1,2,3 and
bQ i �
oq
oz
ðbZÞZi: ð57Þ
As was shown in [12] (see also [1,11]), constraint (56) will in general only be satisfied if we are able to find a parameteri-
zation, z = (z1(q),z2(q), . . . ,zm(q)), such that the flux, ~f ðqðzÞÞ, depends at most quadratically on each zp for p = 1,2, . . . ,m. For
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the Euler equations from gas dynamics, as well as related systems, such a parameterization is known [12]. Assuming that a
parameterization has been found, we proceed by diagonalizing the flux Jacobian:
~ni �~J ¼ RiKiR
�1
i ;
where Ri is the matrix of right eigenvectors and Ki is the diagonal matrix of eigenvalues. Following the philosophy of Roe’s
approximate Riemann solver [23], the systems N-scheme is obtained by applying the scalar N-scheme to each characteristic
component. This results in the following method:
Systems N-scheme : UTi ¼
1
2

RiK
þ
i R�1

i ðbQ i � QHÞ: ð58Þ
The upwind parameter can be recovered by enforcing local conservation:
QH ¼
X3

i¼1

RiK
�
i R�1

i

( )�1 X3

j¼1

RjK
�
j R�1

j
bQ j

( )
: ð59Þ
Note that solving for Qw involves inverting an m �m matrix. Finally, we note that although it is based on a generalization of
the monotone scalar N-scheme, the systems N-scheme is in general only approximately non-oscillatory for nonlinear sys-
tems of conservation laws. In practice, however, this scheme has been shown to work quite well for steady-state shock com-
putations for systems such as the Euler equations from gas dynamics [1].

The systems N-scheme described so far is not linear preserving. In order that the limiting procedure developed for scalar
equations can be re-used for systems, Abgrall and Mezine [5] proposed to project the distributed residuals into the eigen-
space of the Roe–Struijs–Deconinck averaged flux Jacobian in some direction ~n. In practice, the direction ~n is chosen from
physical considerations. For example, in the case of the shallow water equations or the Euler equation from gas dynamics,
an approach that gives good results in practice is to take ~n to be the local Roe–Struijs–Deconinck averaged fluid velocity:
~n ¼ ~u. Once a limiting direction has been chosen, the limiting procedure can be summarized as follows:
for p ¼ 1 . . . m

for i ¼ 1;2;3 : set Hp
i ¼ ‘

p �UTi ;

for i ¼ 1;2;3 : set bp
i ¼

Hp
iP3

j¼1H
p
j

;

for i ¼ 1;2;3 : set ~bp
i ¼

½bp
i �
þP3

j¼1½b
p
j �
þ ;

end

for i ¼ 1;2;3 : set UTi ¼
Xm

p¼1
~bp

i H
p
i rp;
where ‘p and rp are the pth left and right eigenvectors of ~n �~J, respectively.

3.5. A correction for improved convergence

As was pointed out by Abgrall [2], the N-scheme in conjunction with the limiting procedure outlined in Section 3.4 has
one major drawback: the method does not in general converge to a steady-state solution. The problem is not with the N-
scheme itself, since this method does converge to a steady-state, but instead the problem lies in how the N-scheme interacts
with the limiting procedure. In the same paper, Abgrall [2] also provided a cure for this problem. He arrived at the following
distributed residual:
UTi ¼ BiU
T|ffl{zffl}

limited N-scheme

þ hjT j�1=2KiU
T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

correction

; ð60Þ
where Ki ¼ ð~ni �~JÞ=2, jT j is the area of triangle T , and h is a grid and solution dependent parameter. Notice that conservation
is not affected by this correction term. In order to produce a scheme that converges to a steady-state solution, h needs to be
chosen so that the correction is relatively small near shocks ðh ¼ OðjT j1=2ÞÞ and relatively large in smooth regions (h = 1).
Abgrall [2] proposed the following formula:
h ¼min 1;
jT j

juT j þ 10�10

 !
; ð61Þ
where uT is the projection of UT onto some important eigen-direction. In the case of the compressible Euler equations, uT

should be taken to be the projection of UT onto the entropy wave. In Section 5, in which we consider several numerical
examples, we will refer to the limited and corrected N-scheme as the NnLC-scheme.
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4. Multidimensional relaxation systems

Having reviewed the relaxation scheme paradigm in Section 2 and residual distribution schemes in Section 3, we now
turn to develop a multidimensional relaxation system framework. We again begin with the case of a scalar conservation
law and introduce the following relaxation system:
q

l1

l2

264
375
;t

þ A1

q

l1

l2

264
375
;x

þ A2

q

l1

l2

264
375
;y

¼ 1
e

0
f ðqÞ � l1

gðqÞ � l2

264
375; ð62Þ
where
A1 �
0 1 0

�c1d1 c1 þ d1 0
�c2d1 � 1

4 ðc1 � d1Þðc2 � d2Þ 1
2 ðc2 þ d2Þ 1

2 ðc1 þ d1Þ

264
375; ð63Þ

A2 �
0 0 1

�c1d2 � 1
4 ðc1 � d1Þðc2 � d2Þ 1

2 ðc2 þ d2Þ 1
2 ðc1 þ d1Þ

�c2d2 0 c2 þ d2

264
375: ð64Þ
In these expressions, we assume that~c;~d 2 R2. Just as in the 1D case, we will separate the effects of the hyperbolic left-hand
side of this equation from the relaxation source term on the right-hand side by by viewing (62) as being comprised of the
following two sub-problems:
q

l1

l2

264
375
;t

þ A1

q

l1

l2

264
375
;x

þ A2

q

l1

l2

264
375
;y

¼ 0; ð65Þ

l1

l2

" #
;t

¼ 1
e

f ðqÞ � l1

gðqÞ � l2

" #
: ð66Þ
In subsequent discussion we will make use of the following matrix:
Að~nÞ ¼ n1A1 þ n2A2
; ð67Þ
where ~n 2 R2 such that k~nk 6¼ 0. The three eigenvalues of Að~nÞ are given by
k1;3 ¼ 1
2
~c �~nþ~d �~n
� �

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1d1 � n1c1
� �2

þ n2d2 � n2c2
� �2

r
; ð68Þ

k2 ¼ 1
2
~c �~nþ~d �~n
� �

: ð69Þ
We note that these eigenvalues are strictly real.
Next we define a relaxation procedure that is analogous to the 1D case; the main difference is that in 2D a genuinely mul-

tidimensional Riemann problem such as the one depicted in Fig. 2 must be solved. Instead of attempting to solve this exactly,
we solve it with the standard N-scheme. The full procedure can then be summarized as follows:

(1) Choose values for the parameters c1, c2, d1, and d2.
(2) On an arbitrary triangle, T , approximately solve the multidimensional Riemann problem associated with (65) by

applying the standard N-scheme.
(3) Approximate the effect of Eq. (66) on the solution calculated in Step (2) by directly setting l1 = f(q) and l2 = g(q). In

other words, instantaneously relax the solution from Step (2) to the e ? 0 limit.

4.1. The N-scheme

The first scheme that we will produce with the relaxation procedure is the N-scheme applied to the original scalar con-
servation law. We set
~c ¼~d ¼~u; ð70Þ
where ~u is the Roe–Struijs–Deconinck average that satisfies (46). The above choice for~c and~d results in the following coef-
ficient matrix for the relaxation system:
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Að~nÞ ¼
0 n1 n2

�u1ð~u �~nÞ n1u1 þ~u �~n n2u1

�u2ð~u �~nÞ n1u2 n2u2 þ~u �~n

264
375; ð71Þ
this matrix has eigenvalues given by
k1;2;3 ¼~u �~n; ð72Þ
and, as in the 1D case, has an incomplete set of eigenvectors (i.e., the eigenvalues have algebraic multiplicity 3, but geometric
multiplicity of only 2).

Because Að~nÞ only has two linearly independent eigenvectors it cannot be diagonalized; and instead, we reduce it to Jor-
dan canonical form via the following similarity transformation:
Að~nÞ ¼ SMS�1; ð73Þ
where
M ¼
~n �~u 1 0

0 ~n �~u 0
0 0 ~n �~u

264
375 and S ¼

1 � 1
~n�~u 0

u1 �n2 �n2

u2 n1 n1

264
375: ð74Þ
In approximately solving the Riemann problem via the N-scheme (Step (2) of the relaxation procedure), we will need to
make sense of the expression ½Að~nÞ�þ. Without a full set of eigenvectors, we do this in the following way:
½Að~nÞ�þ � SMþS�1; where Mþ ¼
½~n �~u�þ 1 0

0 ½~n �~u�þ 0
0 0 ½~n �~u�þ

264
375: ð75Þ
This results in two possibilities:

(1) ½~n �~u�þ ¼ ð~n �~uÞ ) ½Að~nÞ�þ ¼ Að~nÞ;

(2) ½~n �~u�þ ¼ 0 ) ½Að~nÞ�þ ¼
�ð~n �~uÞ n1 n2

�u1ð~n �~uÞ u1n1 u1n2

�u2ð~n �~uÞ u2n1 u2n2

24 35.

The first of these two expressions is exactly the result one should expect; the second expression, however, is somewhat
troubling. We should expect that ½Að~niÞ�þðUi � UHÞ ¼ 0 if ð~ni �~uÞ 6 0, where
Ui � ðQ i;
~f ðQ iÞÞ and UH � ðQH; ~lHÞ:
Instead, we are currently stuck with the following result when ð~n �~uÞ 6 0:
½Að~niÞ�þðUi � UHÞ ¼ �ð~u �~nÞðQi � QHÞ þ~n � ð~f ðQ iÞ �~l1
H
Þ

n o 1
u1

u2

264
375:
In order to clean up this result, we are forced to slightly modify the relaxation procedure for the N-scheme. We will leave the
sub-problem (65) alone, but replace sub-problem (66) with the the following system of ODEs:
l1

l2

" #
;t

¼ 1
e

of
oq q̂ð Þq� l1

og
oq q̂ð Þq� l2

" #
; ð76Þ
where q̂ is a piecewise constant function in space that is constant on each triangle T ; the value of this constant is bQ , the
multidimensional Roe–Struijs–Deconinck average (46). This results in the following modification of Step (3) in the relaxation
procedure:

(3) On each triangle T approximate the effect of (76) on the solution calculated in Step (2) by directly setting l1 = u1q and
l2 = u2q. In other words, instantaneously relax the solution from Step (2) to the e ? 0 limit.

Note that in general
of
oq

q̂ð Þq 6¼ f ðqÞ and
og
oq
ðq̂Þq 6¼ gðqÞ;
and therefore, replacing (66) with (76) will yield a different numerical scheme. As we will demonstrate below, it is the
scheme based on (76) that will reproduce the N-scheme.
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The solution value at each node is now given by
Ui � ðQ i;u
1Qi;u

2Q iÞ: ð77Þ
Additionally, we enforce the condition:
UH � ðQH;u
1QH;u

2QHÞ: ð78Þ
With these modifications it is now true that ½Að~niÞ�þðUi � UHÞ ¼ 0 if ð~ni �~uÞ 6 0.
In order to proceed with the relaxation procedure, we solve a Riemann problem between three states of the form (77)

with i = 1,2,3. Solving this Riemann problem via the N-scheme tells us that the residuals distributed to each node are given
by
uTi ¼
1
2
½Að~niÞ�þðUi � UHÞ �

1
2 Að~niÞ Ui � UHð Þ if ~u �~ni > 0;

0 otherwise;

(
ð79Þ
where Uw has the form (78). In order to determine Uw in terms of the Ui values, we add the three residuals given by (79) and
enforce that this sum yields the total residual in triangle T :
X3

i¼1

uTi ¼
1
2

X3

i¼1

Að~niÞUi; ð80Þ

) 1
2

X3

i¼1

½Að~niÞ�þðUi � UHÞ ¼
1
2

X3

i¼1

ð~ni �~uÞQ i

u1ð~ni �~uÞQi

u2ð~ni �~uÞQi

264
375: ð81Þ
If k~uk > 0, then we note the following result on each triangle T :

(1) 9k 2 ð1;2;3Þ such that ~u �~nk > 0,
(2) 9k 2 ð1;2;3Þ such that ~u �~nk < 0.

This result implies that there are two possibilities whenever k~uk > 0: the 1-target case – $ exactly one k s.t.~u �~nk > 0, and
the 2-target case – $ exactly two k s.t.~u �~nk > 0. Without loss of generality, let us assume that~u �~n1 > 0 and~u �~n3 < 0, which
yields one of the two possibilities:
1-target solution :~u �~n1 > 0; ~u �~n2 6 0; ~u �~n3 < 0; ð82Þ
2-target solution :~u �~n1 > 0; ~u �~n2 > 0; ~u �~n3 < 0: ð83Þ
We consider each of these two cases below.

4.1.1. The 1-target solution
The 1-target case is easy to analyze: the total residual is completely distributed to the lone node that is downwind of the

flow, which we have taken without loss of generality to be node 1. If we let U denote the component of the residual corre-
sponding to Q, then the 1-target case results in the following residual distribution:
UT1 ¼
1
2

X3

i¼1

ð~u �~niÞQi; UT2 ¼ 0; UT3 ¼ 0; ð84Þ
which is the same result that one would obtain with the N-scheme on the original scalar conservation law.

4.1.2. The 2-target solution
The 2-target case involves distribution to two nodes, which we have taken without loss of generality to be the 1 and 2

nodes. From equation (80) we arrive at the following linear system that must be solved in order to obtain the upwind param-
eter Uw:
�ðAð~n1Þ þ Að~n2ÞÞUH ¼ Að~n3ÞU3: ð85Þ
However, it is not difficult to show that
Að~n1Þ þ Að~n2Þ þ Að~n3Þ ¼ 0 ) Að~n3Þ ¼ �ðAð~n1Þ þ Að~n2ÞÞ: ð86Þ
This implies that Uw � U3. Therefore the 2-target case results in the following residual distribution corresponding to Q:
UT1 ¼
1
2
ð~n1 �~uÞðQ1 � Q 3Þ; UT2 ¼

1
2
ð~n2 �~uÞðQ1 � Q3Þ; UT3 ¼ 0: ð87Þ
This result is again identical to the original scalar conservation law.
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4.2. The RXN-scheme: genuinely multidimensional local Lax-Friedrichs

One of the main difficulties with the N-scheme is that computing the upwind parameter Qw for complicated systems of
conservation laws can become prohibitively expensive. Despite this fact, few alternatives have been developed in the RD lit-
erature. One such alternative was introduced by Abgrall [2], who considered a local Lax-Friedrichs-type method that was
obtained, in analogy to the 1D case, by taking the unstable ‘‘centered” residual and adding the appropriate numerical viscos-
ity. In this work, we construct a new method based on the idea of relaxation systems; this scheme can be viewed as a dif-
ferent multidimensional generalization of the 1D LLF method. For brevity we will call this method the RXN-scheme, which
stands for ‘‘relaxation N-scheme3.” In analogy with the 1D LLF method as derived in Section 2.3, we make the following choice
for the parameters~c and ~d in (62)–(64):
3 The
~d ¼ �~c ¼ ðsT ; sT Þ: ð88Þ
Note that each triangle can have a different value of sT ; this is why we call it a ‘local’ Lax-Friedrichs. This choice results in a
coefficient matrix of the form
Að~nÞ ¼
0 n1 n2

n1ðsT Þ2 0 0

n2ðsT Þ2 0 0

264
375; ð89Þ
which has an eigenvector decomposition given by
Að~nÞ ¼ SMS�1

¼

�1 0 1
sT n1

k~nk � n2

k~nk
sT n1

k~nk
sT n2

k~nk
n1

k~nk
sT n2

k~nk

2664
3775 �k~nksT

0
k~nksT

264
375
� 1

2
n1

2k~nksT
n2

2k~nksT

0 � n2

k~nk
n1

k~nk
1
2

n1

2k~nksT
n2

2k~nksT

26664
37775: ð90Þ
The Chapman-Enskog expansion for this relaxation system can be written to first order as
q;t þ f ðqÞ;x þ gðqÞ;y � er � ðsT Þ2 � ðf 0ðqÞÞ2 �f 0ðqÞg0ðqÞ
�f 0ðqÞg0ðqÞ ðsT Þ2 � ðg0ðqÞÞ2

" #
rq

 !
: ð91Þ
The eigenvalues of the diffusion matrix in the above expression are
k1 ¼ ðsT Þ2; k2 ¼ ðsT Þ2 � ðf 0ðqÞ2 þ g0ðqÞ2Þ; ð92Þ
which results in the following restriction on the choice of the lone parameter sT :
sT P k~f 0ðqÞk; ð93Þ
for all q 2 T .
Applying the N-scheme to the relaxation system with coefficient matrix (89), yields the following residual
ui ¼
1
2

SiM
þ
i S�1

i ðUi � UHÞ; ð94Þ
where UH ¼ ðQH;l1
H
;l2

H
Þ. Simplifying this expression gives
ui ¼
1
4

sT k~nikðQi � QHÞ þ~ni � ð~f ðQ iÞ �~lHÞ
n o 1

sT
n1

i
k~nik

sT
n2

i
k~nik

2664
3775: ð95Þ
In order to calculate Uw, we must enforce conservation:
X3

i¼1

ui ¼ uT ¼ 1
2

X3

i¼1

~ni �~f ðQiÞ
n1

i ðsT Þ
2Q i

n2
i ðsT Þ

2Q i

2664
3775; ð96Þ
which results in the following linear system for the upwind parameters ðQH; ~lHÞ:
words ‘‘N-scheme” appear here because we make use of the N-scheme to solve the homogeneous part of the relaxation system.
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X3

i¼1

sT k~nik 0 0

0
n1

i
n1

i
k~nik

n1
i

n2
i

k~nik

0
n1

i
n2

i
k~nik

n2
i

n2
i

k~nik

26664
37775

QH

l1
H

l2
H

264
375 ¼X3

j¼1

sT k~njkQ j �~nj �~f ðQjÞ

n1
j

~nj

k~njk
�~f ðQjÞ � sT Q j

� �
n2

j
~nj

k~njk
�~f ðQjÞ � sT Q j

� �
266664

377775: ð97Þ
The solution to this linear system can be written as
QH ¼

P3
j¼1

sT k~njkQ j �~nj �~f ðQ jÞ
� �

P3
i¼1

sT k~nik
; ð98Þ

l1
H
¼ 1

N

X3

i¼1

X3

j¼1

n2
i

k~nik
~nj

k~njk
�~f ðQ jÞ � sT Q j

� �
ðn2

i n1
j � n2

j n1
i Þ; ð99Þ

l2
H
¼ 1

N

X3

i¼1

X3

j¼1

n1
i

k~nik
~nj

k~njk
�~f ðQ jÞ � sT Q j

� �
ðn1

i n2
j � n1

j n2
i Þ; ð100Þ
where
N ¼
X3

i¼1

X3

j¼1

n1
i n1

i n2
j n2

j � n1
i n1

j n2
i n2

j

k~nikk~njk

( )
: ð101Þ
Let us now take a moment to reflect on what just happened. Although the original coefficient matrix, (89), for this method
was comically simple, after applying the N-scheme to this system on an arbitrary triangle, the resulting upwind parameters
are somewhat complicated. On the other hand, we see from equation (97) that the parameter Qw is completely decoupled
from ~lH. We make use of this last fact to construct an alternative scheme in the following way: instead of computing the
components of ~lH from (99)–(101), we enforce
~lH �~f ðQHÞ ð102Þ
by again invoking the e ? 0 relaxation limit. Although this direct enforcement clearly gives a different scheme than if we had
used (99)–(101), what we achieve with this approach is a very simple method that we refer to as the RXN-scheme (relaxation
N-scheme). In terms of the residual distributed to node i in the Q-variable, we now obtain the following expression:
RXN-scheme : UTi ¼
1
4

sT k~nikðQ i � QHÞ þ
1
4
~ni � ð~f ðQ iÞ �~f ðQHÞÞ; ð103Þ
where Qw is given by (98). Note that this method is automatically conservative since Qw still satisfies the first equation in
linear system (97).

Theorem 4.1. (Monotonicity) If there exists a eQ such that
X3

i¼1

~ni �~f ðQ iÞ ¼
X3

i¼1

~ni �~f 0ðeQ ÞQ i; ð104Þ
and
sT P max kf 0ðeQ Þk; kf 0ðQ1Þk; kf 0ðQ 2Þk; kf 0ðQ 3Þk
n o

; ð105Þ
where for each j
~nj � ð~f ðQ jÞ �~f ðQHÞÞ ¼ ~nj �~f 0ðQjÞðQ j � QHÞ ð106Þ
from the Rankine-Hugoniot conditions, then the RXN-scheme as defined by (103) and (98) satisfies the following condition:
UTi ¼
X3

j¼1

cTij ðQi � Q jÞ; ð107Þ
where cTij P 0 for all i, j = 1,2,3. This condition along with the following CFL constraint on the time step:
Dt 6 min
i

2jCijP
T :i2T
k~niksT

8><>:
9>=>;; ð108Þ
is enough to guarantee that the RXN-scheme with forward Euler time-stepping (37) is monotonicity preserving.
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Proof

(1) Using the Rankine-Hugoniot conditions (106), we rewrite the RXN-scheme as
Ui ¼ PTi ðQ i � QHÞ; where PTi �
1
4
ðsT k~nik þ~ni �~f 0ðQ iÞÞ: ð109Þ
Similarly, we rewrite (98) as follows
QH ¼

P3
j¼1

NTj Q j

P3
j¼1

NTj

; where NTj � sT k~njk �~nj �~f 0ðeQ Þ: ð110Þ
Note that the above expression was obtained by making use of (104) and the identity:
P3

k¼1~nk �~f 0ðbQ Þ ¼ 0. Combining
expressions (109) and (110) yields (107) with
cTij �
PTi NTjP3
k¼1

NTk

: ð111Þ
We note that cTij P 0 "i,j 2 (1,2,3), because (105) implies that PTi P 0 " i 2 (1,2,3) and NTj P 0 "j 2 (1,2,3).

(2) We now insert expression (107) into (37) and simplify:
Q nþ1
i ¼ Q n

i �
Dt
jCij

X
T :i2T

X
j2T

cTij Qn
i � Qn

j

� �
;

) Q nþ1
i ¼ 1� Dt

jCij
X
T :i2T

X
j2T

cTij

( )
Q n

i þ
Dt
jCij

X
T :i2T

X
j2T

cTij Q n
j :
Monotonicity is achieved if Qnþ1
i is a convex average of all of the surrounding Q n

j . Since each cTij P 0, we obtain a convex
average provided that
Dt
jCij

X
T :i2T

X
j2T

cTij

 !
6 1 ) Dti 6

jCijP
T

P
j

cTij

 ! ¼ jCijP
T

P
j

PTi NTjP
k

NTk

 ! ;

) Dt 6 min
i

jCijP
T :i2T

PTi

8><>:
9>=>;:
The time restriction is clearly satisfied if we take (108). h

In practice the time step presented in the above theorem is overly restrictive. In the numerical simulations presented in
Section 5, we instead use the same time-step as used with the N-scheme: 85% of the maximum CFL number given by expres-
sion (51).

4.3. Systems N-scheme

The systems generalization of coefficient matrix (89) for a system of m conserved variables is the following 3m � 3m
matrix:
Að~nÞ ¼
0I n1I n2I

�ð~n �~JÞbJ1 n1bJ1 þ~n �~J n2bJ1

�ð~n �~JÞbJ2 n1bJ2 n2bJ2 þ~n �~J

264
375; ð112Þ
where I is again the m �m identity matrix, 0I is the m �m matrix with zeros in every entry, and~J ¼ ðbJ1;bJ2Þt is the flux Jaco-
bian matrix evaluated at the Roe–Struijs–Deconinck average [12]. The systems generalization of (77)-(78) are the following
3m � 1 vectors:
Ui � ðQ i;bJ1Q i;bJ2Q iÞ and UH � ðQH;bJ1QH;bJ2QHÞ: ð113Þ
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In order to calculate the appropriate residuals in the relaxation procedure, we need to again understand how to create the
matrices ½Að~nÞ�þ and ½Að~nÞ��. As in the scalar case this is complicated by the fact that Að~nÞ does not have a full set of eigen-
vectors. In particular, the Jordan canonical form of this matrix can be written as
Að~nÞ ¼ S

D1

. .
.

Dm

2664
3775S�1; where Dp ¼

kp 1 0
0 kp 0
0 0 kp

264
375: ð114Þ
Here kp is the pth eigenvalue of the m �m matrix ~n �~J. We omit the complicated expression for the matrix S. In order to ob-
tain an expression for ½Að~nÞ�þ, one has to replace each kp in the above expression with [kp]+. Carrying this out results in the
following matrix:
½Að~nÞ�þ ¼
�bJ� n1I n2I

�bJþbJ1 � bJ1bJ� n1bJ1 þbJþ n2bJ1

�bJþbJ2 � bJ2bJ� n1bJ2 n2bJ2 þbJþ
2664

3775; ð115Þ
where bJ� ¼ ð~n �~JÞ� ¼ RK�R�1, K is the diagonal matrix of eigenvalues of ~n �~J, and R is the corresponding matrix right-eigen-
vectors. An analogous formula for ½Að~nÞ�� can also be readily constructed. From the above expression we find that
½Að~nÞ��Ui ¼ ½ð~n �bJÞ�Qi;bJ1ð~n �bJÞ�Qi;bJ2ð~n �bJÞ�Qi�t: ð116Þ
Having established expressions for ½Að~nÞ��, we now proceed by applying the N-scheme to the relaxation system:
ui ¼
1
2

Að~niÞ½ �þðUi � UHÞ )
X3

i¼1

Að~niÞ½ ��Ui ¼ �
X3

i¼1

Að~nÞ½ �þ
 !

UH; ð117Þ
where
�
X3

i¼1

½Að~niÞ�þ ¼

P
i
bJ�i 0 0

�
P

i
½bJ�i bJ1 þbJ1bJ�i � P

i
bJ�i 0

�
P

i
½bJ�i bJ2 þbJ2bJ�i � 0

P
i
bJ�i

266664
377775 ð118Þ
and bJ i ¼ ð~ni �~JÞ. The unique solution to the linear system in (117) is UH ¼ ðQH;bJ1QH;bJ2QHÞ with
QH ¼
X3

i¼1

ð~ni �~JÞ�
( )�1 X3

i¼1

ð~ni �~JÞ�Q i

( )
; ð119Þ
and the component of the residual ui associated with Q can be written as
UTi ¼
1
2
ð~ni �~JÞþðQ i � QHÞ: ð120Þ
This result shows that this relaxation scheme identically reproduces the systems N-scheme (58)–(59).

4.4. Systems RXN-scheme

Just as the LLF method in the one-dimensional case, the RXN-scheme extends to systems of conservation laws in a simple
manner. All that we have to do is apply the scalar version of the scheme to each component of the vector conserved variable.
The coefficient matrix in the relaxation procedure can be written as
Að~nÞ ¼
0I n1I n2I

n1s2I 0I 0I

n2s2I 0I 0I

264
375; ð121Þ
where I is the m �m identity matrix. In order to satisfy the sub-characteristic condition we require that
s P max
p¼1;...;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kp;xðqÞ�2 þ ½kp;yðqÞ�2

q
; ð122Þ
over all q 2 T . In the above expression kp,x and kp,y are the pth eigenvalue of o f/oq and og/oq, respectively.
We note that the systems RXN-scheme, and in particular, the version of this scheme with limiters (Section 3.4) and

onvergence corrections (Section 3.5), provides an alternative to the systems N-scheme that does not require the inversion
of an m �m matrix in each element at each time level, nor does it require any special entropy fixes or special treatment near
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stagnation points. Since this method is also simpler than the N-scheme, it should also yield some gains in computational
efficiency. The systems N-scheme and RXN-scheme are compared in detail in Section 5.
4.5. RXN-scheme in d-dimensions

The above procedure for obtaining the 2D RXN-scheme can be generalized to any space dimension. In the d-dimensional
case we arrive at the following scheme:
Fig. 3.
correct
scheme
converg
RXNd-scheme : UTi ¼
sT k~nikðQ i � QHÞ þ~ni � ð~f ðQ iÞ �~f ðQHÞÞ

2d
; ð123Þ
where
QH ¼
Pdþ1

j¼1 sT k~njkQ j �~nj �~f ðQ jÞ
� �
Pdþ1

i¼1 sT k~nik
: ð124Þ
In particular, we note that for d = 1, this scheme exactly reduces to the 1D local Lax-Friedrichs method [24]. We also mote
that the 1/d geometric factor comes from the d-dimensional N-scheme; see for example Eq. (7) in [11].
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Advection equation example. Shown in these panels are (a) the basic N-scheme, (b) the basic RXN-scheme, (c) the limited N-scheme (no convergence
ion is needed for the limited N-scheme on scalar equations), and (d) the RXNnLC-scheme (convergence corrections are needed for the limited RXN-
, even for scalar problems). These results show that the basic RXN scheme is far more diffusive than the N-scheme. However, with limiting and
ence corrections, the RXNnLC gives results comparable to the limited N-scheme.
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5. Numerical examples

In this section we compare the N-scheme and the newly proposed RXN scheme on several numerical examples. We will
refer to the versions of the N-scheme and RXN-scheme that have been limited according to the procedure outlined in Section
3.4 and corrected according to the procedure outlined in Section 3.5 as the NnLC-scheme and RXNnLC-scheme, respectively.

5.1. Steady-state advection

First, we consider the advection equation on [0,1] � [0,1]:
Fig. 5.
has a to
of the l
q;t þ~u � rq ¼ 0; ð125Þ
with non-divergent velocity and boundary conditions given by
~uðx; yÞ ¼ ð�py;pxÞ;

qð1; yÞ ¼ 0; qðx;0Þ ¼ sin p 0:7�x
0:6
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k1 ¼
1
2
ðwðx2; y2Þ � wðx3; y3ÞÞ;

k2 ¼
1
2
ðwðx3; y3Þ � wðx1; y1ÞÞ;

k3 ¼
1
2
ðwðx1; y1Þ � wðx2; y2ÞÞ:
The advantage of this formulation is that we achieve numerical conservation, even though the equations are solved in advec-
tive form.

For the RXN scheme, we use residual (103) where the flux functions are given by
~f ðQ iÞ ¼~uiQ i;
~f ðQHÞ ¼~uHQH; ~uH ¼

k~n1k~u1 þ k~n2k~u2 þ k~n3k~u3

k~n1k þ k~n2k þ k~n3k
;

and Qw is given by (97) as usual.
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The Mach number along the top and bottom edges of the NACA 0012 airfoil. Panel (a) is the NnLC-scheme solution, while Panel (b) is the RXNnLC-
solution. In Panels (c) and (d) we directly compare the Mach number profiles for each method: Panel (c) shows the Mach number on the top portion

irfoil and Panel (d) shows the Mach number on the bottom portion of the airfoil. These results show that the RXNnLC-scheme produces comparable
to the NnLC-scheme.
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5.4. Subsonic flow around a cylinder

Finally, we consider flow around a cylinder with Mach numberM1 ¼ 0:35. This problem has been considered in several
papers including [1,2]. The computational domain is [ � 7,7] � [ � 7,7] with a cylinder of radius 1/2 centered at (0,0). The
steady-state Mach number on a grid with 12552 elements and 6404 nodes is shown in Fig. 12 for the (a) NnLC and (b)
RXNnLC schemes. Near the cylinder both methods produce comparable results. Away from the cylinder the grid resolution
becomes coarser; and therefore, visible differences in the two methods appear. In these regions the RXNnLC scheme pro-
duces slightly more diffused contours than the NnLC scheme.

Shown in Fig. 13 are the deviation of the physical entropy, s = log(p/qc), from the ambient entropy, s1 = log(1/cc):
R = (s � s1)/js1j. Panel (a) is the NnLC-scheme and panel (b) is the RXNnLC-scheme. The minimum and maximum values
of R for the NnLC and the RXNnLC schemes are (�4.101 � 10�3,4.324 � 10�2) and (�1.471 � 10�3,1.291 � 10�2), respec-
tively. Each panel consists of 31 contour lines ranging from the minimum to the maximum R for each scheme. Therefore,
these results show that the RXNnLC-scheme has a smaller entropy deviations, but that this error is more spread out behind
the cylinder, while the NnLC-scheme has larger entropy deviations, but that this error is more concentrated near the x-axis.

The total residual as a function of time is shown in Fig. 14. Both methods give essentially the same convergence rates for
this example. Finally, we note that the RXNnLC-scheme again runs about twice as fast as the NnLC-scheme.
6. Conclusions

In this work we have extended the results of LeVeque and Pelanti [21] to genuinely multidimensional residual distri-
bution schemes. Specifically, we have shown that the N-scheme, both the scalar and the systems version, can be derived
from a relaxation principle. Furthermore, using a genuinely multidimensional extension of the 1D local Lax-Friedrichs
relaxation principle, we have derived a novel residual distribution scheme. The main benefit of this approach is that it
does not require the inversion of an m �m matrix, where m is the number of conserved variables, at each time step
in each grid element. The new method also does not require the use of Roe–Struijs–Deconinck averages. Using several
examples of the 2D Euler equations from gas dynamics, including an example of transonic flow around the NACA
0012 airfoil, supersonic flow around a cylinder, and subsonic flow around a cylinder, we have compared the limited
and corrected N-scheme (NnLC) with the newly proposed scheme (RXNnLC). These comparisons show that despite being
computationally less expensive, the new method is capable of producing results comparable to those of the NnLC-scheme,
although often with slightly more numerical diffusion. For more complicated equations such as magnetohydrodynamics
or the general relativistic Einstein equations, we believe that the benefit of a simpler and computationally less expensive
algorithm will far outweigh the slight increase in numerical dissipation. We will consider some of these more compli-
cated systems in future work.

Finally, we would like to point out that the numerical code used in this work, including all of the numerical grids, will be
made publicly available as part of the REDPACK software project. For more information see
http : ==www:math:wisc:edu= � rossmani=software:html:
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