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multidimensional (approximate) Riemann solvers as opposed to the piecemeal 1D Rie-
mann solvers usually employed by finite volume methods. In 1D, LeVeque and Pelanti
[RJ. LeVeque, M. Pelanti, A class of approximate Riemann solvers and their relation to
relaxation schemes, J. Comput. Phys. 172 (2001) 572] showed that many of the standard
approximate Riemann solver methods (e.g., the Roe solver, HLL, Lax-Friedrichs) can be
obtained from applying an exact Riemann solver to relaxation systems of the type intro-
duced by Jin and Xin [S. Jin, Z.P. Xin, Relaxation schemes for systems of conservation-laws

Keywords:
Residual distribution schemes
Relaxation systems

Approximate Riemann solvers in arbitrary space dimensions, Commun. Pure Appl. Math. 48 (1995) 235]. In this work we
Finite volume methods extend LeVeque and Pelanti’s results and obtain a multidimensional relaxation system
Hyperbolic conservation laws from which multidimensional approximate Riemann solvers can be obtained. In particular,

we show that with one choice of parameters the relaxation system yields the standard
N-scheme. With another choice, the relaxation system yields a new Riemann solver, which
can be viewed as a genuinely multidimensional extension of the local Lax-Friedrichs
scheme. This new Riemann solver does not require the use Roe-Struijs-Deconinck aver-
ages, nor does it require the inversion of an m x m matrix in each computational grid cell,
where m is the number of conserved variables. Once this new scheme is established, we
apply it on a few standard cases for the 2D compressible Euler equations of gas dynamics.
We show that through the use of linear-preserving limiters, the new approach produces
numerical solutions that are comparable in accuracy to the N-scheme, despite being com-
putationally less expensive.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades intense research into shock-capturing schemes has resulted in several numerical methods for solv-
ing partial differential equations (PDEs) that admit discontinuous weak solutions in the form of shock-waves. Examples of
such schemes include WENO (weighted essentially non-oscillatory) [16], central [18], MUSCL (monotone upstream-centered
schemes for conservation laws) [27], and wave propagation schemes [19]. One difficulty with these methods is that in gen-
eral they do not trivially extend to problems in complex geometries. In order to handle application problems where complex
geometry is of great importance, three broad classes of strategies have been considered: (1) Cartesian cut-cell methods [15],
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(2) overlapping meshes [9], and (3) unstructured grid methods. We will focus in this work on the last approach, thus elim-
inating the problem of cut-cells (1st approach) and interpolation between different grid patches (2nd approach), but requir-
ing some efficient grid generation tool.

On unstructured grids, the two main classes of methods that have been developed are discontinuous Galerkin (DG)
[10,22] and residual distribution (RD) [1,13] schemes. The discontinuous Galerkin approach is based on defining a piecewise
polynomial approximation that is continuous inside element interiors, but discontinuous across element boundaries. Local
1D Riemann problems are solved across element boundaries to construct the necessary numerical fluxes. Residual distribu-
tion schemes can be viewed as a finite volume method where the finite volumes are defined by a grid that is dual to the
original triangulation.

Although DG schemes have their own particular advantages, the focus of this work will be on RD schemes and, in partic-
ular, the aspect of RD schemes that separates them from all other methods: RD schemes are based on solving genuinely mul-
ti-dimensional Riemann problems. This aspect allows one to obtain methods that are positivity preserving for scalar
conservation laws and essentially non-oscillatory for systems. This same feature, however, presents a challenge: how can
these multi-dimensional Riemann problems be solved efficiently? The standard answer to this question is the so-called sys-
tems N-scheme [26] (see also [1,3]), which is a generalization of Roe’s approximate Riemann solver for 1D systems [23]. One
goal of this work is to develop an alternative to this approach.

LeVeque and Pelanti [21] showed how several of the standard approximate Riemann solvers can be interpreted as exact
Riemann solvers for a perturbed system of hyperbolic equations known as relaxation systems. Their work was motivated by
Jin and Xin’s earlier paper [17] on a class of numerical methods known as relaxation schemes. What LeVeque and Pelanti
essentially showed is that Jin and Xin’s “new” class of methods could actually be thought of as a reinterpretation of various
pre-existing approximate Riemann solvers; these results are reviewed in Section 2. After reviewing RD schemes in Section 3,
we focus in this work on the continuation of LeVeque and Pelanti’s reasoning and show how the N-scheme can be also be
derived from a relaxation system. Furthermore, using this interpretation we derive a novel genuinely multi-dimensional Rie-
mann solver that can be viewed as a multidimensional extension of the 1D local Lax-Friedrichs scheme [24]. Both of these
results are presented in Section 4. Finally, we compare the numerical accuracy of the N-scheme and the newly derived
scheme on several examples in Section 5. What we find is that when the appropriate limiters are applied, the novel scheme
has comparable accuracy to the N-scheme, although it tends to be slightly more diffusive - this result is of course consistent
with well-known 1D results comparing local Lax-Friedrichs versus Roe-type approximate Riemann solvers. On the other
hand, this loss of accuracy is compensated by the fact that the new scheme is less computational expensive. This gain in com-
putational efficiency will become significant for problems involving complicated equations such as the relativistic Euler or
MHD equations.

2. Review of 1D relaxation systems

We briefly review in this section the results of LeVeque and Pelanti [21] for the case of 1D conservation laws. For simplic-
ity we consider for the moment a scalar conservation laws of the form

q.+f(@),=0, (1)

where x € R is the spatial coordinate, t € R* is the time coordinate, g € R is the conserved variable, and f(q) : R — R is the
flux function. We assume that this conservation law is hyperbolic, meaning that f’(q) € R for all q in the solution domain.

2.1. Finite volume methods in 1D

Using the idea of relaxation, we will construct in this section numerical methods for approximating (1). All of these meth-
ods are in the general class of finite volume methods [20], which we briefly recall in this subsection.
Let 7 5« be the numerical grid with grid cells centered at x = x; and spanning the interval [x; — Ax/2, x; + Ax/2], where

xi=a+(i—1/2)Ax. (2)

Here i is an integer ranging from 1 to N, a and b are the left and right end points of the domain, respectively, and Ax = (b — a)/
N is the grid spacing. In each grid cell x; and at each time level t = t" we seek an approximation to the cell average of the exact
solution q(x,t):

1 Xi+AX/2
Qg [ e 3)

POAX Jyax2

Integrating (1) over the grid cell centered at x; and from ¢t = t" to t = ™" results in a numerical update formula for Q[ that can
be written in the following fluctuation splitting form:

. At ;
Q" =Q — o ATAQL ), + ATAQY ), @
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where A"AQ},, , and A"AQ} , , are left- and right-going fluctuations, which measure the amount of flux that enters into grid
cell x; through the grid interfaces at x = x; + Ax/2 and x = x; — Ax/2, respectively. In order for this update to be numerically
conservative these fluctuations must satisfy

AfAQ?H/z + A+AQ?+1/2 =f(Qi,1) —f(@Q). (3)

Note that in update (4) we collect the left-going fluctuation from the grid interface at x; + Ax/2 and the right-going fluctu-
ation from the grid interface at x; — Ax/2, while in expression (5) we are adding the left- and right-going fluctuations at the
same grid interface.

For first-order accurate methods, the fluctuations in update (4) are obtained by first assuming that the approximate solu-
tion has a constant value, Qf, in each grid cell, and then solving at each grid interface, x; 12 = x; — Ax/2, the initial value
problem for (1) with the piecewise constant initial data:

n

. if x < Xi_12
0)=¢ 1 ’ 6
q(x,0) { Q ifx<xi1p. (6)

This initial value problem is referred to as the Riemann problem. One of the pieces of information that can be obtained from
solving the Riemann problem is how much of the initial flux difference, f(Q) — f(Q} ,), is carried to the left and how much to
the right. It is precisely this information that is stored in the fluctuations, A~ AQ and A*AQ.

2.2. Relaxation method framework in 1D

The relaxation schemes introduced by Jin and Xin [17] are based on the idea of approximating the quasilinear equation (1)
by a linear system with a cleverly chosen source term. The role of this source term is to force the linear system to relax in the
limit as t — oo towards the original equation. By “hiding” the nonlinearity in the source term, relatively complicated quasi-
linear Riemann problems can be replaced by simpler linear Riemann problems.

There are many kinds of relaxation systems that one could develop in order to create an approximate solution to (1) (see
pp. 26-48 of Bouchut [7] for a discussion of several different approaches). In this work we follow the approach of [21] and
consider the following relaxation system:

2L cldl2)
ple L-cd c+d]pl, & [flg-pl (7)
coefficient matrix source term

where c,d € R are parameters that will be adjusted in the next few subsections in order to arrive at various approximate
Riemann solvers. Without loss of generality we will assume that ¢ < d. The key observation is that by taking & — 0, the
right-hand side forces 1 — f{q). Since the first equation in the above systemis g+ px = 0, 4 — f{q) will cause the relaxed sys-
tem solution to approach the original conservation law solution.

In order to make this statement more precise, we will carry out a so-called Chapman-Enskog expansion, which in this case
is simply a Taylor series expansion in ¢ applied to system (7). Omitting the algebra, this expansion to O(¢?) yields the follow-
ing equation for q(x,t):

4@y =+ (3 -c)(a-T)a] +ou ®)

diffusive correction

original cons. law

This approximation is stable for ¢ > 0 if the values c and d are chosen to produce positive (or at least non-negative) diffusion;
this occurs if

]
c< % <d (©)
The above statement is often referred as the sub-characteristic condition (see for example [8,17,21]), since it requires that the
eigenvalues of the coefficient matrix, which are just c and d, enclose the characteristic speed of the original conservation law,

oflaq.

From relaxation system (7), LeVeque and Pelanti [21] showed that various classical approximate Riemann solvers could
be derived. Following the philosophy of operator splitting (see pp. 380-390 of LeVeque [20] for a review), system (7) is first
rewritten as two sub-problems:

{Z% [ cid] W (10)

o= (@)~ ). an



9530 J.A. Rossmanith/Journal of Computational Physics 227 (2008) 9527-9553

Using this interpretation, LeVeque and Pelanti’s [21] procedure for obtaining different approximate Riemann solvers can be
summarized as follows:

(1) Choose values for the parameters c and d.

(2) Exactly solve the Riemann problem for the homogeneous linear system (10).

(3) Approximate the effect of equation (11) on the solution calculated in Step (2) by directly setting u = f{q). In other
words, instantaneously relax the solution from Step (2) to the ¢ — 0 limit.

We will simply refer to this as the relaxation procedure. In the next four subsections, we will apply this strategy for various
values of ¢ and d. Each time we carry out step (2) of the above procedure we will exactly solve the initial value problem (i.e.,
—o00 < X < 00) for system (10) using the generic Riemann data:

Q. ifx<0, f(Q,) ifx<0,
“&m*{Qrﬁx>a £Q,) ifx>0,

where Q, and Q, are constants. Note that we are allowed to take u = f{q) in the initial conditions at any arbitrary time step,
since in the previous time-step we set u = f(q) in Step (3) of the relaxation procedure.

and u(x,0) = { (12)

2.3. Local Lax-Friedrichs (LLF) for scalar equations

The local Lax-Friedrichs or Rusanov method [24] is obtained by applying the relaxation procedure with the choice
c=-s and d=s, (13)

where s > |[f(q)| in order to satisfy the sub-characteristic condition. With this choice the Riemann solution is obtained by
splitting the jump between the left and right states, (Q,,f{Q,)) and (Q,,f{Q;)), along the eigenvectors of the coefficient matrix:

[f(Q%;:J?(ﬁQg)} =L ]+2[] (14)

where the corresponding eigenvalues are 2! = —s and 42 = 5. From this expression we obtain the following fluctuations:

ATAQ = 7't = Q) - (@) - 5 Q- Q). (15)
ATAQ = 7292 = 3 (F(Q)) Q) +5 (- Q) (16)

2.4. Harten, Lax, and van Leer (HLL) for scalar equations

The HLL method of [14] is obtained by applying the above procedure with the choice
c=s, and d=s, (17)

where s, < f(q) < s, in order to satisfy the sub-characteristic condition. With this choice the Riemann solution is obtained by
splitting the jump between the left and right states, (Q,f(Q,)) and (Q,.f{Q;)), along the eigenvectors of the coefficient matrix:

ey —sian] =[] +s) (18)

where the corresponding eigenvalues are 2! =s, and 4% = s,. From this expression we obtain the following fluctuations:

st —sf
S — S

sEs, —sfs,
S — S,

aaq=siot 5097 = (A=) re) s - )@ - (19)

In the above expressions we have made use of the following notation:
s* =max(0,s) and s~ =min(0,s). (20)

We will make use of this notation throughout the remainder of this paper.
2.5. Roe’s approximate Riemann solver for scalar equations

Roe’s approximate Riemann solver [23] is obtained by applying the above procedure with the choice

_g_ . fQ)-fQ)
c=d=s= Q0 (21)
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With this choice the coefficient matrix becomes deficient, since only one linearly independent eigenvector exists. Therefore,
the jump between the left and right states, (Q,f(Q,)) and (Q,,f{Q;)), can be written as

L‘(QQ,; :fQ@)} - °‘m (22)

where the corresponding eigenvalue is / = s (algebraic multiplicity 2, geometric multiplicity 1). Although this seems like an
over-determined system for «, there exists a unique solution: o = Q, — Q.. This results in the following fluctuations:

A*AQ =s*(Q, — Q). (23)

2.6. LLF and HLL for systems

Finally, we briefly explain how these three interpretations can be applied to a system of conservation laws of the form (1),
now with g € R™ and f(q) : R™ — R™. We again assume hyperbolicity, which implies that the m x m matrix, 9f/0q, has m real
eigenvalues and m linearly independent eigenvectors for all ¢ in the solution domain.

The systems LLF and HLL methods are obtained by considering the following relaxation system:

{ZF [—ZLU <c+ud>u] [Z],X:Hﬂq)o—u}’ (24)

where [ is the m x m identity matrix, Ol is the m x m matrix with zeros in every entry, u € R, and ¢,d € R.
The systems LLF method is obtained by taking

s=d=-c, where s> max || (25)
p=1,..m

and /? is the pth eigenvalue of d f/oq. With this choice we again arrive at formula (15), which is now applied to each com-
ponent of the solution vector.
Similarly, the systems HLL method is obtained by taking

s;=c¢, s,=d, where s, < min (/) and s > max (AP). (26)

=1,...m =1...., m

With this choice we again arrive at formula (19), which is now applied to each component of the solution vector.
2.7. Roe’s approximate Riemann solver for systems

Roe’s approximate Riemann solver does not follow from working with relaxation system (24), but instead from

q (01l 11791 1 0
M,ﬁ[—@)z ZTHM],X_s[f(q)—u]' @n
In the above expression,
~ of A
J= oq (Q), (28)
where Q is the Roe average [23] and satisfies
@ -0 - -re (29)

With this choice the Riemann solution is obta}ned by splitting the jump between the left and right states, (Q,,f(Q,)) and
(Q~f(Q,)), along the m distinct eigenvectors of | in the following manner:

|: Qr - QZ :| _ O(l r]
f(Q) - f(Q) s'r!
where s” and 1” are the pth eigenvalue and right eigenvector of the Roe matrix J, respectively. Just as in the scalar case, it
seems as though the parameters o are overdetermined. However, since | satisfies the constraint (29), it can easily be shown

that the first set of m equations involving Q, — Q, are identical to the second set of m equations involving f(Q;) — f{Q,). In other
words, there are only m distinct equations for m values of «; and therefore, a unique solution exists:

OCpZ(p'(Qr_Q[)v for p:17~"7m> (31)

where ¢ is the pth left eigenvector of J. This results in the following fluctuations:

+---+oc’"Lr:rm} (30)
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m
ATAQ =) ST - (Q — Q)3 (32)
p=1
Note that conservation follows from (29).

3. Residual distribution schemes

We will describe in this section the basic residual distribution method for solving hyperbolic conservation laws in mul-
tidimensions. For further details we refer the reader to articles by Abgrall [1,2] and Abgrall and Mezine [4,5]. We consider a
conservation law of the form

0 +V-f@=q,+f@,+8&q),=0, (33)

where (x,y) € R? are the spatial coordinates, t € R is the time coordinate, ¢ € R™ is the vector of conserved variable, and
f(q) R™ — R™2 js the flux function. We will assume that this equation is hyperbolic, meaning that the m x m flux Jacobian
matrix,

L ()

n=n-—-= 34
Ji) =7 (34)
is diagonalizable with real eigenvalues for all fi € R? such that ||i]| = 1 and for all q in the solution domain.

The first step in approximately solving (33) in some domain Q c R? is to mesh the domain with a finite number of tri-
angles. We will refer to this triangulation as 7, where h refers to a representative triangle radius, which in this work we
just take to be the square root of the triangle area: h = /|T|. Associated with this triangulation is a dual grid, which is con-
structed by connecting triangle centers to edge centers. A an example triangulation along with its dual grid is shown in Fig. 1.

Unlike the discontinuous Galerkin approach [10,22], approximate solutions are centered on triangle nodes (i.e., centers of
the dual grid) rather than triangle centers. In order to obtain an update for these node centered values, we integrate (33) over

tn+1 th+ 1

the median dual cell C; and from ¢t =t" to t = t"*1:
// q()?,t”“)d)?:// q()?,t”)dk’—/ / V-f(q)d)?dt:// qE " dR - / ]f - dsdt.
G G e G G Tier /1" aGnT)

Next we define the median dual cell average and the time-averaged fluctuations through 8(C; N 7):

Q! zﬁ /] aea (35)

[nl

of =4 / fw . dsdt. (36)

Using these definitions, the update formula for a generic residual distribution scheme can be written as follows:

Q;‘H»] _ Q _ /0 Z (DT (37)

|C‘ T:ieT

QO Triangle center - -- Grid lines of median dual cells
@ Triangle node — Grid lines
® Center of triangle edge

Fig. 1. Sample triangulation and dual grid.
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} 7,

Fig. 2. A depiction of the multidimensional Riemann problem that must be solved in each triangle. The numerical solution is piecewise constant on each
median dual cell. For example, the approximate solution on the three dual cells that overlap the triangle shown in this figure are Q, Q,, and Qs. Note that the
area of each of the three sections is the same, the midpoint where the dashed lines meet is (¥; + X, + X3)/3, fi are the inward-pointing normal vectors to
each edge, and the magnitude of 7, is equal to the length of the edge to which it is orthogonal.

In the remainder of this work, we will approximate the exact solution, (X, t), with a piecewise constant representation, Q;,
that is constant on each median dual cell. We note that this view of RD schemes is slightly different than the standard view
(e.g. [1]), where the approximate solution is usually viewed to be piecewise linear on each triangle 7. Although these
descriptions seem contradictory, in the case for first-order accuracy in time, both interpretations yield the same numerical
schemes. The advantage of viewing the solution as being piecewise constant on each medial dual cell is that this naturally
sets up a series of multidimensional Riemann problems in each triangle (see Fig. 2), which can be solved to construct the
fluctuations'®] . In this way, we can then view approximate constructions of ¢ as approximate Riemann solvers.
Computing the fluctuations @ is generally done using the following framework (again, the two interpretations, piece-
wise constant on each dual cell vs. piecewise linear on each primal cell, make use of the exactly the same framework):

(1) On each triangle 7 construct a total residual:
®7 :// V. frdi= 4 frods (38)
T oT

where f” denotes an interpolant that passes through the three nodal values

-

*,f(Q;) for i=1,23.

For example if we simply use linear interpolation, the total residual can be written as?
r 1G& ., =
o7 =5 3 Q) i 39)

Here #i; represents the inward pointing normal vectors to the three edges of the triangle 7. The length of fi; is equal to
the length of the edge to which it is perpendicular. If the three nodes of triangle 7 are given by (x;,y;) fori=1,2,3, then
the three scaled normals can be written as

iy = (¥, — ¥3,%5 — Xa)',

fly = (Y3 = Y1,%1 — X3)',

fis = (V1 — Y2, %2 — X1)".

Once this total residual has been calculated, it is then distributed to each of the nodes of the triangle:

o7 - ol ol Dl

2

~—

The detailed strategy for how this distribution is accomplished yields a specific numerical method.

3.1. Design principles for scalar conservation laws

We first focus on design principles for scalar equations; in a subsequent subsection we explain how to extend this to the
systems case. In order to obtain a numerical update that produces a stable and accurate approximation to (33), we will need
the distribution strategy to satisfy certain properties:

! In this work, the terms distributed residual and fluctuation mean the same thing and are used interchangeably.
2 For the standard N-scheme, which we will describe shortly, this is not the definition of the total residual that is used.
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(1) Numerical conservation: Since the interpolation of the numerical solution is continuous across triangle edges, conser-
vation simply reduces to the following constraint:

3
S o7 = o7 (40)
i=1

In other words, in a given triangle, the sum of the distributed residuals must equal the total residual.
(2) Monotonicity preserving: This condition makes sure that the numerical update satisfies a local maximum principle,
which is needed to guarantee that the update does not generate any new spurious maxima or minima. If we write

3

o] =3 Q- Q). (41)

j=1
then the monotonicity requirement can be written as (see [13]):
C;]( >0 Vije(1,2,3). (42)

(3) Linear preserving: The order of accuracy of update (37) in the steady-state depends, among other things, on how accu-
rately the total residual (38) is calculated on each triangle [6]. If we use formula (39), then 7 = (’)(h3) in the steady-
state, which is the correct order of accuracy if want an approximate solution, Q;, that is O(hz) accurate in the steady-
state. What we actually need in order to get an O(h?) accurate steady-state solution is that not only that @7 = O(h%),
but that each distributed residual also satisfies ¢7 = O(h?). The distributed residuals can be written as

D] =p197, O3 =p07, D) =07, (43)

where 8; measures the fraction of the total residual that is distributed to node i. To ensure that the distributed residuals are
of the same order as the total residual, we need to make sure that the 8;'s remain bounded as h — 0. Therefore, the O(h%)
accuracy condition, or more commonly referred to as the linear preserving condition, can be writtten as follows (see [13]):

p; fori=1,2,3, is uniformly bounded independent of the mesh. (44)

3.2. Scalar N-scheme

Modern finite volume methods for hyperbolic PDEs are typically based on solving, either exactly or approximately, a Rie-
mann problem between neighboring states. For multidimensional problems, a standard approach is to solve local 1D Rie-
mann problems and then use the information from the Riemann solutions to construct numerical fluxes or fluctuations
(see Chapters 19-21 of LeVeque [20]).

In the RD framework, however, a multidimensional Riemann problem is solved. In an arbitrary triangle 7, we consider the
Riemann problem between three constant states: Q, Qz, and Qs (see Fig. 2 for a depiction). Exact solutions to multidimen-
sional Riemann problems are at best expensive to evaluate, and in general not well-understood for many hyperbolic systems
such as the Euler equations from gas dynamics [25]. Therefore, in practice an approximate method such as the N-scheme
(the “N” stands for Narrow) [12,13] is utilized; this approach can be viewed as a multidimensional generalization of Roe’s
approximate Riemann solver [23].

Just as in the 1D case, we define a Roe-average (henceforth called the Roe-Struijs-Deconinck average [12]):

L of A
il == 45
3@ (45)
where Q is an average of the three nodal values Q; for i = 1,2,3 on the current triangle 7. The Roe-Struijs—-Deconinck average
satisfies the following constraint, which generalizes the 1D constraint given by (29):

o =] i (@ )= § Fa')-ds (46)
where q" is the linear interpolant passing through (%;, Q;) fori = 1,2,3. If the flux, f(q), is at most a quadratic function of g, then

i =3 (@) +F(Q) +F(Q) ()
The approximate Riemann solution gives rise to the following set of fluctuations:

N-scheme: & = % " - 1] " (Qi — Qu), (48)

where Q, is the so-called upwind parameter. In 1D the the upwind parameter relative to state Q; is always either Q;_; if u>0
or Q;. if u < 0. In multidimensions, Q, is obtained by enforcing the conservation constraint (40):
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Q*<Zj”” )/«21W1m>, (49)
i=1 j=1

where we have made use of the following two identities:

oy

Il
N

3
(ET . ﬁ)Q Z Ql + Z[u Qn
i=1
3
PR

In order to demonstrate that the N-scheme is monotonicity preserving, we rewrite (48) in the form (41) with

gl
21
31
Mw
=
3
=
|
Il
o

I
—_

i=1

_ T A )

C.: = =, P
J ST - ]

k

> 0. (50)
From this it can be shown that update (37) is monotone under the following CFL condition:

At < mi 2G|
< min ~— = =t
P X0 [ -ny]

T:ieT

(51)

3.3. Linear preserving limiters

The N-scheme described so far is both conservative and monotonicity preserving; however, it is not yet linear preserving.
The problem with the previously described N-scheme is that the weights (43) are not uniformly bounded independent of the
mesh. In order to modify the N-scheme to achieve uniformly bounded p;’s, Abgrall and Mezine [5] introduced a nonlinear
limiting procedure. The limiting process takes the original §; and replaces them with limited versions, denoted p;. The sim-
pler of the two approaches discussed in [5] yields the following formulas:

@/ o Bl
fi=t = Bi=otf (52)
@7 DY
j
which guarantees that 0 < ; < 1. The limited residuals are then given by
Limited N-scheme : @] = ;@". (53)

It is clear that this scheme is both linear preserving and conservative. Furthermore, Abgrall and Mezine [5] proved that the
limited N-scheme retains the monotonicity properties of the original N-scheme with the same CFL condition (51).

3.4. Extension to systems

Following [12], the N-scheme is extended to systems of conservation laws by first defining the following averaged flux
Jacobians:

~_of 5 _og T_ /7112

I :@( ), J? :@(Z), and J=(J',J%), (54)
where Z is a parameterization of Q and

= 1

2=32+2+2) (55)

In order to achieve a conservative linearization we must find a parameter vector, Z, such that the following constraint is
satisfied:

3

> (i J)Qi = ff (56)
where z" is the linear interpolant that passes through the points (%;,Z;) fori=1,2,3 and

_0oq
=521, (57)

As was shown in [12] (see also [1,11]), constraint (56) will in general only be satisfied if we are able to find a parameteri-
zation, z=(z'(q),z%(q),. ..,Z™(q)), such that the flux, f( (z)), depends at most quadratically on each z° for p=1,2,...,m. For

(O)
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the Euler equations from gas dynamics, as well as related systems, such a parameterization is known [12]. Assuming that a
parameterization has been found, we proceed by diagonalizing the flux Jacobian:

i ] = RAR; ",

where R; is the matrix of right eigenvectors and A; is the diagonal matrix of eigenvalues. Following the philosophy of Roe’s
approximate Riemann solver [23], the systems N-scheme is obtained by applying the scalar N-scheme to each characteristic
component. This results in the following method:

1

Systems N-scheme : @] = ERiAfRfl (Qi—Qy). (58)

The upwind parameter can be recovered by enforcing local conservation:

3 13
Q4 = {ZRiAiRil} {ZRjA],RJ.IQj}. (59)
i=1 Jj=1

Note that solving for Q, involves inverting an m x m matrix. Finally, we note that although it is based on a generalization of
the monotone scalar N-scheme, the systems N-scheme is in general only approximately non-oscillatory for nonlinear sys-
tems of conservation laws. In practice, however, this scheme has been shown to work quite well for steady-state shock com-
putations for systems such as the Euler equations from gas dynamics [1].

The systems N-scheme described so far is not linear preserving. In order that the limiting procedure developed for scalar
equations can be re-used for systems, Abgrall and Mezine [5] proposed to project the distributed residuals into the eigen-
space of the Roe-Struijs—Deconinck averaged flux Jacobian in some direction fi. In practice, the direction ii is chosen from
physical considerations. For example, in the case of the shallow water equations or the Euler equation from gas dynamics,
an approach that gives good results in practice is to take i to be the local Roe-Struijs—Deconinck averaged fluid velocity:
i = ii. Once a limiting direction has been chosen, the limiting procedure can be summarized as follows:

forp=1...m
fori=1,2,3: set @' =¢.¢7;
p
fori=1,2,3: set p'= 3®i s
219
. 1+
fori=1,2,3: set ﬁf:ygli}w;
2 lB]

end
. m -~
fori=1,2,3: set ¢f:2p:]ﬁf®§’r",

where ¢ and r® are the pth left and right eigenvectors of 7i - ], respectively.
3.5. A correction for improved convergence

As was pointed out by Abgrall [2], the N-scheme in conjunction with the limiting procedure outlined in Section 3.4 has
one major drawback: the method does not in general converge to a steady-state solution. The problem is not with the N-
scheme itself, since this method does converge to a steady-state, but instead the problem lies in how the N-scheme interacts
with the limiting procedure. In the same paper, Abgrall [2] also provided a cure for this problem. He arrived at the following
distributed residual:

o7 = BT +0/T|KD7, (60)
N—— N e’
limited N-scheme correction

where K; = (fi; - J)/2, |T| is the area of triangle 7, and 0 is a grid and solution dependent parameter. Notice that conservation
is not affected by this correction term. In order to produce a scheme that converges to a steady-state solution, 0 needs to be
chosen so that the correction is relatively small near shocks (0 = O(|7|"/?)) and relatively large in smooth regions (0 =1).
Abgrall [2] proposed the following formula:

4 | ‘
f=min|1,—————|, 61
( 7| +1071° 61)

where ¢7 is the projection of &’ onto some important eigen-direction. In the case of the compressible Euler equations, ¢”
should be taken to be the projection of ®” onto the entropy wave. In Section 5, in which we consider several numerical
examples, we will refer to the limited and corrected N-scheme as the N\LC-scheme.
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4. Multidimensional relaxation systems
Having reviewed the relaxation scheme paradigm in Section 2 and residual distribution schemes in Section 3, we now

turn to develop a multidimensional relaxation system framework. We again begin with the case of a scalar conservation
law and introduce the following relaxation system:

fl@)—p' ], (62)
W, W, w1, g(q) — i

where
I 0 1 0
Al = c'd' c+d 0 (63)
| —cd' — L —dY) A -d*) L +d) L +dY))
r 0 0 17
A= |- -1 -d)PE-d) 1(E+d) L +d) (64)
i —c2d? 0 c+d |

In these expressions, we assume that ¢.deRr2 Just as in the 1D case, we will separate the effects of the hyperbolic left-hand
side of this equation from the relaxation source term on the right-hand side by by viewing (62) as being comprised of the
following two sub-problems:

q q q
pp AT | A | =0, (65)
W], w], wl,
w1 f(q)—/ﬂ}

_2 , 66
{uzlt é{g(q)—u2 (50)

In subsequent discussion we will make use of the following matrix:
A(f) = n'A" + n2A%, (67)

where 7i € R? such that ||7i|| # 0. The three eigenvalues of A(ii) are given by

A3 :%(E- ﬁ+&-ﬁ) i%\/( 1q' nH:’)2 + (nzd2 - nzcz)z, (68)
2=l (ciivdn). (69)

We note that these eigenvalues are strictly real.

Next we define a relaxation procedure that is analogous to the 1D case; the main difference is that in 2D a genuinely mul-
tidimensional Riemann problem such as the one depicted in Fig. 2 must be solved. Instead of attempting to solve this exactly,
we solve it with the standard N-scheme. The full procedure can then be summarized as follows:

(1) Choose values for the parameters c!, c2, d*, and d°.

(2) On an arbitrary triangle, 7, approximately solve the multidimensional Riemann problem associated with (65) by
applying the standard N-scheme.

(3) Approximate the effect of Eq. (66) on the solution calculated in Step (2) by directly setting u' = f(q) and p? = g(q). In
other words, instantaneously relax the solution from Step (2) to the ¢ — O limit.

4.1. The N-scheme

The first scheme that we will produce with the relaxation procedure is the N-scheme applied to the original scalar con-
servation law. We set

—

¢=d=1, (70)

where ii is the Roe-Struijs-Deconinck average that satisfies (46). The above choice for ¢ and d results in the following coef-
ficient matrix for the relaxation system:
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0 n! n?
A= | —u'(@-i) n'u' +i-i nu’ ; (71)
—u?(i - i) n'u? nu? +i-i

this matrix has eigenvalues given by
A3 =i, (72)

and, as in the 1D case, has an incomplete set of eigenvectors (i.e., the eigenvalues have algebraic multiplicity 3, but geometric
multiplicity of only 2).

Because A(r) only has two linearly independent eigenvectors it cannot be diagonalized; and instead, we reduce it to Jor-
dan canonical form via the following similarity transformation:

A(it) = SMS™, (73)
where
a1 0 1 -4 0
M=| 0 i O and S=|u' -n? -n?|. (74)
0 0 - uw> n' onl

In approximately solving the Riemann problem via the N-scheme (Step (2) of the relaxation procedure), we will need to
make sense of the expression [A(i)]". Without a full set of eigenvectors, we do this in the following way:

M-t 1 0
A" =SM'S', whereM'=| 0 [i-u" 0 |. (75)
0 0 i

This results in two possibilities:

(M) [-u =@-u) = [A@)] =A®);
—(it - 1) n'! n?
(2) [fi-d =0 = [A(M)] = |-u'@-u) u'n' u'n?|.
—u?(ii-i) un' u?n?
The first of these two expressions is exactly the result one should expect; the second expression, however, is somewhat
troubling. We should expect that [A(7i;)]" (U; — Ux) = 0 if (7; - &i) < O, where
Ui=(Q:f(Q)) and Ui = (Qu,fiy):
Instead, we are currently stuck with the following result when (i - i) < 0:
1
A (Us = Us) = { (- )(Qi — Qo) +7i - (FlQ) — fil) } | u!
u2
In order to clean up this result, we are forced to slightly modify the relaxation procedure for the N-scheme. We will leave the
sub-problem (65) alone, but replace sub-problem (66) with the the following system of ODEs:

F (4 1
w1 6@q-p
[zﬂ} |k 7 (76)
St
where § is a piecewise constant function in space that is constant on each triangle 7; the value of this constant is Q, the
multidimensional Roe-Struijs—Deconinck average (46). This results in the following modification of Step (3) in the relaxation
procedure:

(3) On each triangle 7 approximate the effect of (76) on the solution calculated in Step (2) by directly setting u' = u'q and
1% = u?q. In other words, instantaneously relax the solution from Step (2) to the & — 0 limit.

Note that in general

of . og . )
a—q(q)q #f(q) and @(q)q # 8(q);

and therefore, replacing (66) with (76) will yield a different numerical scheme. As we will demonstrate below, it is the
scheme based on (76) that will reproduce the N-scheme.
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The solution value at each node is now given by

U= (Q;,u'Q;,u°Qy). (77)
Additionally, we enforce the condition:
U = (Q*7U1Q*7UZQ*)~ (78)

With these modifications it is now true that [A(ii;)] " (U; — Uy) = O if (#i; - &f) < 0.
In order to proceed with the relaxation procedure, we solve a Riemann problem between three states of the form (77)
with i =1,2,3. Solving this Riemann problem via the N-scheme tells us that the residuals distributed to each node are given

by
A(ﬁ,)(U, — U*) if i - ﬁ,‘ > 0,

. (79)
0 otherwise,

1 . 1
¢ =5 A (Ui = Us) = {2

where U, has the form (78). In order to determine U, in terms of the U; values, we add the three residuals given by (79) and
enforce that this sum yields the total residual in triangle 7:

2 1, -
Yol =5 D AU (80)
i=1 i=1
1 3 1 3 (ﬁl : ﬁ)(21
= 5 D A (Ui - Uy) = 5 >l - w)Q; |- (81)
i=1 i=1 u2(ﬁi ) ﬁ)Q:

If ||i|| > 0, then we note the following result on each triangle 7:

(1) 3k € (1,2,3) such that i - i, > 0,
(2) 3k € (1,2,3) such that i - i, < 0.

This result implies that there are two possibilities whenever ||ii|| > 0: the 1-target case - 3 exactly one k s.t. ii - 7i, > 0, and
the 2-target case — 3 exactly two k s.t. ii - ii, > 0. Without loss of generality, let us assume that ii - fi; > 0 and ii - fi3 < 0, which
yields one of the two possibilities:

1-target solution: i -
i.

1>0, ﬁﬁzgo ﬁ'ﬁ3<0, (82)
2-target solution: i i

il
ﬁl > 0, . ﬁz > 0,
We consider each of these two cases below.

4.1.1. The 1-target solution

The 1-target case is easy to analyze: the total residual is completely distributed to the lone node that is downwind of the
flow, which we have taken without loss of generality to be node 1. If we let @ denote the component of the residual corre-
sponding to Q, then the 1-target case results in the following residual distribution:

1. .
o] =3 Y @i, ¥ =0, # =0, (84)
i=1

which is the same result that one would obtain with the N-scheme on the original scalar conservation law.

4.1.2. The 2-target solution

The 2-target case involves distribution to two nodes, which we have taken without loss of generality to be the 1 and 2
nodes. From equation (80) we arrive at the following linear system that must be solved in order to obtain the upwind param-
eter Uy:

—(A(T) + A(7i2))Ux = A(ii3)Us. (85)
However, it is not difficult to show that
A(h) +A() +A(fi3) =0 = A(fi3) = —(A(Tlh) +A(i2)). (86)
This implies that U, = Us. Therefore the 2-target case results in the following residual distribution corresponding to Q:
1. . 1. .
o] = j(”l )(Q —Q3), ] = j(”z -)(Q; —Q3), @3 =0. (87)

This result is again identical to the original scalar conservation law.
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4.2. The RXN-scheme: genuinely multidimensional local Lax-Friedrichs

One of the main difficulties with the N-scheme is that computing the upwind parameter Q, for complicated systems of
conservation laws can become prohibitively expensive. Despite this fact, few alternatives have been developed in the RD lit-
erature. One such alternative was introduced by Abgrall [2], who considered a local Lax-Friedrichs-type method that was
obtained, in analogy to the 1D case, by taking the unstable “centered” residual and adding the appropriate numerical viscos-
ity. In this work, we construct a new method based on the idea of relaxation systems; this scheme can be viewed as a dif-
ferent multidimensional generalization of the 1D LLF method. For brevity we will call this method the RXN-scheme, which
stands for “relaxation N-scheme®.” In analogy with the 1D LLF method as derived in Section 2.3, we make the following choice

for the parameters ¢ and d in (62)-(64):

d=—¢=(s7,s7).

(88)

Note that each triangle can have a different value of s7; this is why we call it a ‘local’ Lax-Friedrichs. This choice results in a

coefficient matrix of the form

0 n' n?
A@i)= [n'(sT)> 0 O],
n2(s7* 0 0

which has an eigenvector decomposition given by

= -1
A(ii) = SMS
- _1 ' _n_
;11 02 711 —|Ifi|IsT 2 2T 2T
N n s’n 2 1
_ = —_—— = n n
= | Infl [ 0 0 [l [l
T n2 1 T 12 —
sTn2 n' T2 Iri||s” 1 nl_ _n?
[} [ [l 2 2[flsT  2[sT

The Chapman-Enskog expansion for this relaxation system can be written to first order as
7~ (F@)?  ~f@e@ ]vq)
Sflag@ ) -0
The eigenvalues of the diffusion matrix in the above expression are
=T =T - (@’ +g @),
which results in the following restriction on the choice of the lone parameter s”:
s = ' (@)ll,

forallqe 7.
Applying the N-scheme to the relaxation system with coefficient matrix (89), yields the following residual

Q0 +F(@), 8@, ~ eV - ( {

1 _
Q= jSiM?Si (Ui — Uy,

where Uy = (Qy, u, 12). Simplifying this expression gives
1

0= 3 {STIRIQ ~ Qu) + - (@)~ i) } | 71 .

2
7 1

[
In order to calculate Uy, we must enforce conservation:
3 1 3 ﬁi f(Ql)
T
doei=0" =5 |l Y
2
n?(s”)"Q;

which results in the following linear system for the upwind parameters (Qy, fix):

3 The words “N-scheme” appear here because we make use of the N-scheme to solve the homogeneous part of the relaxation system.

(89)

(90)

(91)

(92)

(93)
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[l 00 kg o STIRIQ - R f(Q)
S0 G g e =D (\n,u flQ) - STQI) : (97)
i=1 nln2  n2n2 2 j=1

0 LT Hx (HnH f(QJ) STQj)

The solution to this linear system can be written as

> (I IQ - 7 -F(Q)

Q=" , 8)
;sTanH

1 :123:23:n_3< n (Q)—STQ>(n-2n? —n?n}) (99)

* TN & il \| i )Ty = T,
133G n! /i =

=5y Z%( — ~f(Qj)—sTQ,>(n n? —n'n?), (100)
N & o ||\l

where

ninln?n? — nln!n?n?
(101)

3 3
N — i i
22 { GG

Let us now take a moment to reflect on what just happened. Although the original coefficient matrix, (89), for this method
was comically simple, after applying the N-scheme to this system on an arbitrary triangle, the resulting upwind parameters
are somewhat complicated. On the other hand, we see from equation (97) that the parameter Q, is completely decoupled
from [i,. We make use of this last fact to construct an alternative scheme in the following way: instead of computing the
components of i, from (99)-(101), we enforce

P Ef(Q*) (102)

by again invoking the ¢ — 0 relaxation limit. Although this direct enforcement clearly gives a different scheme than if we had
used (99)-(101), what we achieve with this approach is a very simple method that we refer to as the RXN-scheme (relaxation
N-scheme). In terms of the residual distributed to node i in the Q-variable, we now obtain the following expression:

RXN-scheme : &/ = s7ii(Q; ~ Qu) + gt (F(Q) ~ (@) (103)

where Q is given by (98). Note that this method is automatically conservative since Q, still satisfies the first equation in
linear system (97).

Theorem 4.1. (Monotonicity) If there exists a Q such that

3 3 _
S fQ) =Y - F)Q, (104)
i-1 i-1
and
s” > max {Hf’( ) IF @l IF @)1, Hf’@)H} (105)
where for each j
iy (F(Q) = f(Qw) = ;- F(@)(Q - QW) (106)
from the Rankine-Hugoniot conditions, then the RXN-scheme as defined by (103) and (98) satisfies the following condition:
3
o =) cf(Qi-Q, (107)
j=1
where ¢ > 0 for all i,j=1,2,3. This condition along with the following CFL constraint on the time step:
: 2(G|
At < ming ————— 108
M S s 108
TieT

is enough to guarantee that the RXN-scheme with forward Euler time-stepping (37) is monotonicity preserving.
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Proof
(1) Using the Rankine-Hugoniot conditions (106), we rewrite the RXN-scheme as
@ =P{(Q~Qu). where P{ = (s || +7i-['(@) (109)
Similarly, we rewrite (98) as follows

3
YNNG

j=1

3
>N/
j=1

Qs =

, where NJ =s7|ii| - 7i;- f(Q). (110)

Note that the above expression was obtained by making use of (104) and the identity: Zzzl Tk ~f’(@) = 0. Combining
expressions (109) and (110) yields (107) with

PTNT

7 1)

G=s—. (111)
> Ny
k=1

We note that ¢ > 0 Vij € (1,2,3), because (105) implies that P/ > 0V ie(1,23)and N/ > 0Vj € (1,23).

(2) We now insert expression (107) into (37) and simplify:

Q= ?|C|ZZU(QH ).

T:ieT jeT
1
~ar -1 T Tl ¥ S
Gi TieT jeT TieT jeT

Monotonicity is achieved if Q"'

average provided that

At , < <
Cd(ﬂ;;@g - oAus e LAY
T i T

is a convex average of all of the surrounding QJ’-‘. Since each cg > 0, we obtain a convex

= At <min ‘Ci|7
X P

T:ieT
The time restriction is clearly satisfied if we take (108). O

In practice the time step presented in the above theorem is overly restrictive. In the numerical simulations presented in
Section 5, we instead use the same time-step as used with the N-scheme: 85% of the maximum CFL number given by expres-
sion (51).

4.3. Systems N-scheme

The systems generalization of coefficient matrix (89) for a system of m conserved variables is the following 3m x 3m
matrix:

01 n'l n?l
A= |—@-DI* nJt+i-] o, (112)
_(ﬁf)"z 172 nzjz+n ]

where [ is again the m x m identity matrix, Ol is the m x m matrix with zeros in every entry, and | = (Tl ,jz)t is the flux Jaco-
bian matrix evaluated at the Roe-Struijs-Deconinck average [12]. The systems generalization of (77)-(78) are the following
3m x 1 vectors:

Ui=(Q:J'QJ%Q) and Uy = (Qu.J'Qu. J2Qu). (113)
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In order to calculate the appropriate residuals in the relaxation procedure, we need to again understand how to create the
matrices [A(fi)]" and [A(fi)]”. As in the scalar case this is complicated by the fact that A(ii) does not have a full set of eigen-
vectors. In particular, the Jordan canonical form of this matrix can be written as

D! 2 1 0
A(fi) =S S7', where D=0 2 0|. (114)
D" 0o o0 X

Here /” is the pth eigenvalue of the m x m matrix ii - J. We omit the complicated expression for the matrix S. In order to ob-
tain an expression for [A(f)]*, one has to replace each /? in the above expression with [/P]*. Carrying this out results in the
following matrix:
-J- n'l n?l
A = _j+j1 —j‘f* nl]l +j+ nzjl , (115)
7j+jz 7]277 n]jz nzjz +j+

where ]i (i - j) = RA*R™!, A is the diagonal matrix of eigenvalues of 7i - J, and R is the corresponding matrix right-eigen-
vectors. An analogous formula for [A(7i)]” can also be readily constructed. From the above expression we find that

AM) U = [(7-])*Qu,J (A - ) Qi ([ - ]) " Qil" (116)
Having established expressions for [A(i)]", we now proceed by applying the N-scheme to the relaxation system:
1 R 3 3 .
=5 A (Ui = Uy) = JA( P = <_Z[A(n)]*> Uy, (117)
i=1 i=1
where
T o 0
3 _NOT-T LT I-
*Z[A(ﬁi)r - ZI: A N DT F 0 (118)

i=1

3 (3
Q= {Z(ﬁi -J)} {Z(ﬁ,« -])Q,-}7 (119)
and the component of the residual ¢; associated with Q can be written as

o/ :%(ﬁi Q- Q). (120)

This result shows that this relaxation scheme identically reproduces the systems N-scheme (58)-(59).
4.4. Systems RXN-scheme

Just as the LLF method in the one-dimensional case, the RXN-scheme extends to systems of conservation laws in a simple
manner. All that we have to do is apply the scalar version of the scheme to each component of the vector conserved variable.
The coefficient matrix in the relaxation procedure can be written as

01 n'l nl
AGi) = |n's21 o1 01 |, (121)
n?sl 01 00

where [ is the m x m identity matrix. In order to satisfy the sub-characteristic condition we require that

s> max \/W" LY@, (122)

over all g € 7. In the above expression /** and /P are the pth eigenvalue of d f/oq and 9g/dq, respectively.

We note that the systems RXN-scheme, and in particular, the version of this scheme with limiters (Section 3.4) and
onvergence corrections (Section 3.5), provides an alternative to the systems N-scheme that does not require the inversion
of an m x m matrix in each element at each time level, nor does it require any special entropy fixes or special treatment near
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stagnation points. Since this method is also simpler than the N-scheme, it should also yield some gains in computational
efficiency. The systems N-scheme and RXN-scheme are compared in detail in Section 5.

4.5. RXN-scheme in d-dimensions

The above procedure for obtaining the 2D RXN-scheme can be generalized to any space dimension. In the d-dimensional
case we arrive at the following scheme:

RXNg-scheme : @] = ST Qi = Q) EZ' Q) 7f(Q*)), (123)
where
73 (sl — 7 Q)
L = o . (124)
i1 ST [l

In particular, we note that for d = 1, this scheme exactly reduces to the 1D local Lax-Friedrichs method [24]. We also mote
that the 1/d geometric factor comes from the d-dimensional N-scheme; see for example Eq. (7) in [11].

a q(x,y) [N-scheme] b q(x,y) [RXN-scheme]
1fr : : : 7 1fr : : :
0.75 ] 0.75
0.5 ] 0.5
0.25 ] 0.25
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
q(x,y) [Limited N-scheme q(x,y) [RXN\LC—scheme]
c d
1 T T T T 1
0.75 0.75
0.5 . 0.5
0.25 . 0.25
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Fig. 3. Advection equation example. Shown in these panels are (a) the basic N-scheme, (b) the basic RXN-scheme, (c) the limited N-scheme (no convergence
correction is needed for the limited N-scheme on scalar equations), and (d) the RXN\LC-scheme (convergence corrections are needed for the limited RXN-
scheme, even for scalar problems). These results show that the basic RXN scheme is far more diffusive than the N-scheme. However, with limiting and

convergence corrections, the RXN\LC gives results comparable to the limited N-scheme.
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L2—norm of residual vs. time

10° - : - : -
Limited RXN
0° | RXN\LC |
10°} 1
107 1
Limited N

10" : : : : :

0 0.5 1 15 2 2.5 3

Fig. 4. Advection equation example. L,-norms of the total residual for the limited N-scheme, the limited RXN-scheme, and the RXN\LC-scheme. This 